本文整理汇总了Python中matplotlib.pylab.draw函数的典型用法代码示例。如果您正苦于以下问题:Python draw函数的具体用法?Python draw怎么用?Python draw使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了draw函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _brush
def _brush(self,event,region,inverse=False):
"""
This will loop through all the other subplots (without the brush region)
and change the opacity of the points not associated with that region.
when inverse is True, it will "unbrush" by resetting the opacity of the brushed points
"""
opacity_fraction = self.opac
# what variables are in the plot?
plot_vars = [x[1] for x in self.axis_info if x[0] == event.inaxes][0]
## figure out the min max of this region
minx, miny = region.get_xy()
maxx = minx + region.get_width()
maxy = miny + region.get_height()
## now query the data to get all the sources that are inside this range
if isinstance(self.data[plot_vars[0]][0],datetime.datetime):
maxx = datetime.datetime.fromordinal(maxx)
minx= datetime.datetime.fromordinal(minx)
elif isinstance(self.data[plot_vars[0]][0],datetime.date):
maxx = datetime.date.fromordinal(maxx)
minx= datetime.date.fromordinal(minx)
if isinstance(self.data[plot_vars[1]][0],datetime.datetime):
maxy = datetime.datetime.fromordinal(maxx)
miny= datetime.datetime.fromordinal(minx)
elif isinstance(self.data[plot_vars[1]][0],datetime.date):
maxy = datetime.date.fromordinal(maxy)
miny= datetime.date.fromordinal(miny)
inds = (self.data[plot_vars[0]]<= maxx) & (self.data[plot_vars[0]] > minx) & \
(self.data[plot_vars[1]] <= maxy) & (self.data[plot_vars[1]] > miny)
invinds = ~ inds # get all indicies of those records not inside the region
for a,pv in self.axis_info:
# dont self brush!
if a == event.inaxes:
continue
## get the scatterplot color and alpha channel data
self.t = a.collections[0]
fc = self.t.get_facecolor() # this will be a 2d array
'''Here we change the color and opacity of the points
fc[index,0] = Red
fc[index,1] = Green
fc[index,2] = Blue
fc[index,3] = Alpha
default is [ 0.4 , 0.4 , 1. , 1.0]
'''
if not inverse:
fc[invinds,2] /= 20. #reduce blue channel greatly
fc[invinds,3] /= opacity_fraction
else:
fc[invinds,2] *= 20.
fc[invinds,3] *= opacity_fraction
self.t.set_facecolor(fc)
plt.draw()
示例2: plot_spikes
def plot_spikes(time,voltage,APTimes,titlestr):
"""
plot_spikes takes four arguments - the recording time array, the voltage
array, the time of the detected action potentials, and the title of your
plot. The function creates a labeled plot showing the raw voltage signal
and indicating the location of detected spikes with red tick marks (|)
"""
# Make a plot and markup
plt.figure()
plt.title(titlestr)
plt.xlabel("Time (s)")
plt.ylabel("Voltage (uV)")
plt.plot(time, voltage)
# Vertical positions for red marker
# The following attributes are configurable if required
vertical_markers_indent = 0.01 # 1% of Voltage scale height
vertical_markers_height = 0.03 # 5% of Voltage scale height
y_scale_height = 100 # Max of scale
marker_ymin = 0.5 + ( max(voltage) / y_scale_height / 2 ) + vertical_markers_indent
marker_ymax = marker_ymin + vertical_markers_height
# Drawing red markers for detected spikes
for spike in APTimes:
plt.axvline(spike, ymin=marker_ymin, ymax=marker_ymax, color='red')
plt.draw()
示例3: test1
def test1():
x = [0.5]*3
xbounds = [(-5, 5) for y in x]
GA = GenAlg(fitcalc1, x, xbounds, popMult=100, bitsPerGene=9, mutation=(1./9.), crossover=0.65, crossN=2, direction='min', maxGens=60, hammingDist=False)
results = GA.run()
print "*** DONE ***"
#print results
plt.ioff()
#generate pareto frontier numerically
x1_ = np.arange(-5., 0., 0.05)
x2_ = np.arange(-5., 0., 0.05)
x3_ = np.arange(-5., 0., 0.05)
pfn = []
for x1 in x1_:
for x2 in x2_:
for x3 in x3_:
pfn.append(fitcalc1([x1,x2,x3]))
pfn.sort(key=lambda x:x[0])
plt.figure()
i = 0
for x in results:
plt.scatter(x[1][0], x[1][1], 20, c='r')
plt.scatter([x[0] for x in pfn], [x[1] for x in pfn], 1.0, c='b', alpha=0.1)
plt.xlim([-20,-1])
plt.ylim([-12, 2])
plt.draw()
示例4: histogramac
def histogramac(histc):
histc=histc.histogram(255)
B.show()
pylab.plot(histc)
pylab.draw()
pylab.pause(0.0001)
示例5: ttplot
def ttplot(corf,sr,sl,norm,n, I1, I2,lag):
global tplot_cum
firstfile=int(input_info['n_first_image'])
tplot=time.time()
rchplot=int(ceil(log(n/nchannels)/log(2))+1)
normplot=zeros((1,rcr),dtype=float32)
for ir in xrange(rchplot):
if ir==0:
normplot[0,:nchannels]=1./arange(n-2,n-nchannels-2,-1)
else:
normplot[0,nchannels2*(ir+1):nchannels2*(ir+2)]=1./arange((n-1)/(2**ir)-nchannels2-1,(n-1)/(2**ir)-nchannels-1,-1)
indt=int(nchannels+nchannels2*log(n/nchannels)/log(2))-2
cc1=corf[0,:indt]/(sl[0,:indt]*sr[0,:indt])/normplot[0,:indt]
cc2=corf[nq/2,:indt]/(sl[nq/2,:indt]*sr[nq/2,:indt])/normplot[0,:indt]
t_axis=lag[0,:indt]
t_axis2=tI_avg[0,:n]
t_axis2b=tI_avg[0,:n]/dt+firstfile
lm1.set_data(t_axis,cc1)
lm2.set_data(t_axis2,I1)
lm1b.set_data(t_axis,cc2)
lm2b.set_data(t_axis2b,I2)
ax1.set_xlim(min(t_axis),max(t_axis))
ax1.set_ylim(min(cc1),max(cc1))
ax1b.set_ylim(min(cc2),max(cc2))
ax2.set_xlim(min(t_axis2),max(t_axis2))
ax2b.set_xlim(min(t_axis2b),max(t_axis2b))
ax2.set_ylim(min(I1),max(I1))
ax2b.set_ylim(min(I2),max(I2))
p.draw()
tplot_cum+=time.time()-tplot
示例6: plot
def plot(self, outf=None, dosave=True, savedir="Plot/", show=True):
if outf is None:
outf = self.outf
# print outf
oo = mlab.csv2rec(outf, delimiter=" ")
# print oo
plt.errorbar(oo["time"] % self.period, oo["magnitude"], oo["error"], fmt="b.")
plt.plot(oo["time"] % self.period, oo["model"], "ro")
plt.title(
"#%i P=%f d (chisq/dof = %f) r1+r2=%f"
% (self.dotastro_id, self.period, self.outrez["chisq"], self.outrez.get("r1") + self.outrez.get("r2"))
)
ylim = plt.ylim()
# print ylim
if ylim[0] < ylim[1]:
plt.ylim(ylim[1], ylim[0])
plt.draw()
if show:
plt.show()
if dosave:
if not os.path.isdir(savedir):
os.mkdir(savedir)
plt.savefig("%splot%i.png" % (savedir, self.dotastro_id)) # ,self.period))
print("Saved", "%splot%i.png" % (savedir, self.dotastro_id)) # ,self.period)
plt.clf()
示例7: __init__
def __init__(self, folder, **kwargs):
if not os.path.isdir(os.path.join(folder, 'plots')):
os.mkdir(os.path.join(folder, 'plots'))
plt.ioff()
self.metrics_fig = plt.figure('Metrics')
self.ax2 = self.metrics_fig.add_subplot(111)
self.p1, = self.ax2.plot([], [], 'ro-', label='TEST: Pixel accuracy')
self.p5, = self.ax2.plot([], [], 'rv-', label='TRAIN: Pixel accuracy')
self.p2, = self.ax2.plot([], [], 'bo-', label='TEST: Mean-Per-Class accuracy')
self.p6, = self.ax2.plot([], [], 'bv-', label='TRAIN:Mean-Per-Class accuracy')
self.p3, = self.ax2.plot([], [], 'go-', label='TEST: Mean-Per-Class IU')
self.p7, = self.ax2.plot([], [], 'gv-', label='TRAIN:Mean-Per-Class IU')
self.p4, = self.ax2.plot([], [], 'ko-', label='TEST: Freq. weigh. mean IU')
self.p8, = self.ax2.plot([], [], 'kv-', label='TRAIN:Freq. weigh. mean IU')
plt.xlabel('iterations')
self.handles2, self.labels2 = self.ax2.get_legend_handles_labels()
self.lgd2 = self.ax2.legend(self.handles2, self.labels2, loc='upper center', bbox_to_anchor=(0.5,-0.2))
self.ax2.grid(True)
plt.draw()
示例8: writeNudges
def writeNudges(self, outfile='jitter.txt'):
counters = np.arange(len(self.x))
bjds = self.camera.counterToBJD(counters)
time = bjds - np.min(bjds)
plt.figure('jitter timeseries')
gs = gridspec.GridSpec(2, 1, hspace=0.15)
kw = dict(linewidth=2)
ax = None
for i, what in enumerate((self.x, self.y)):
ax = plt.subplot(gs[i], sharex=ax, sharey=ax)
ax.plot(time, what, **kw)
ax.set_ylabel(['dRA (arcsec)', 'dDec (arcsec)'][i])
if i == 0:
ax.set_title('Jitter Timeseries from\n{}'.format(self.basename))
plt.xlabel('Time from Observation Start (days)')
plt.xlim(np.min(time), np.max(time))
plt.draw()
plt.savefig(outfile.replace('.txt', '.pdf'))
data = [counters, bjds, self.x, self.y]
names = ['imagenumber', 'bjd', 'arcsecnudge_ra', 'arcsecnudge_dec']
t = astropy.table.Table(data=data, names=names)
t.write(outfile.replace('.txt', '_amplifiedby{}.txt'.format(self.amplifyinterexposurejitter)),
format='ascii.fixed_width', delimiter=' ')
logger.info("save jitter nudge timeseries to {0}".format(outfile))
示例9: matplotlib_set_plot
def matplotlib_set_plot(ax, plotter, outfile, default_camera=(14, -120),
hide_x=False, hide_y=False):
ax.set_title(plotter.plot_title)
tsize = 'medium'
ax.set_xlabel(plotter.xaxis_label, fontsize=tsize)
ax.set_ylabel(plotter.yaxis_label, fontsize=tsize)
ax.set_zlabel(plotter.zaxis_label, fontsize=tsize)
ax.ticklabel_format(axis='both', labelpad=150, useOffset=False)
ax.set_xlim(*plotter.xaxis_range)
ax.set_ylim(*plotter.yaxis_range)
ax.set_zlim(*plotter.zaxis_range)
ax.legend(fontsize='small')
# getting a nice view over the whole mess in ppv
ax.view_init(*default_camera)
# hide axis-numbers:
if hide_x:
ax.get_xaxis().set_ticks([])
ax.xaxis.set_visible(False)
ax.get_xaxis().set_visible(False)
if hide_y:
ax.get_yaxis().set_ticks([])
ax.yaxis.set_visible(False)
ax.get_yaxis().set_visible(False)
plt.draw()
plt.savefig(outfile)
plt.show()
示例10: find_gates
def find_gates(mag1, mag2, param):
col = mag1 - mag2
lines = open(param, 'r').readlines()
colmin, colmax = map(float, lines[4].split()[3:-1])
mag1min, mag1max = map(float, lines[5].split()[:-1])
#mag2min, mag2max = map(float, lines[5].split()[:-1])
# click around
fig, ax = plt.subplots()
ax.plot(col, mag2, ',', color='k', alpha=0.2)
ax.set_ylim(mag1max, mag1min)
ax.set_xlim(colmin, colmax)
ok = 1
while ok == 1:
print 'click '
pts = np.asarray(plt.ginput(n=4, timeout=-1))
exclude_gate = '1 {} 0 \n'.format(' '.join(['%.4f' % p for p in pts.flatten()]))
pts = np.append(pts, pts[0]).reshape(5,2)
ax.plot(pts[:,0], pts[:,1], color='r', lw=3, alpha=0.3)
plt.draw()
ok = move_on(0)
lines[7] = exclude_gate
# not so simple ... need them to be parallelograms.
# PASS!
# write new param file with exclude/include gate
os.system('mv {0} {0}_bkup'.format(param))
with open(param, 'w') as outp:
[outp.write(l) for l in lines]
print('wrote %s' % param)
示例11: show_stat
def show_stat(net):
plt.clf()
f = plt.gcf()
f.add_subplot('211')
plt.title(net.checkpoint_name)
plt.plot(net.stat['epoch'], net.stat['train']['error'], label='train')
plt.plot(net.stat['epoch'], net.stat['val']['error'], label='val')
plt.plot(net.stat['epoch'], net.stat['test']['error'], label='test')
plt.legend(loc = 'lower left')
plt.ylabel('error')
plt.xlabel('epochs')
plt.grid()
f.add_subplot('212')
plt.plot(net.stat['epoch'], net.stat['train']['cost'], label='train')
plt.plot(net.stat['epoch'], net.stat['val']['cost'], label='val')
plt.plot(net.stat['epoch'], net.stat['test']['cost'], label='test')
plt.legend(loc = 'lower left')
plt.ylabel('cost')
plt.xlabel('epochs')
plt.grid()
plt.draw()
plt.savefig(net.output_dir + 'stat.png')
time.sleep(0.05)
示例12: waterfall_plot
def waterfall_plot(q,x,sampling=10,cmap=None,num_colors=100,outdir='./',outname='waterfall',format='eps',cbar_label='$|q| (a.u.)$'):
plt.figure()
plt.hold(True)
colorVal = 'b'
vmax = q[:,:].max()
print vmax,len(q)
for n in range(0,len(q),sampling):
if cmap is not None:
print q[n,:].max()
colorVal = get_color(value=q[n,:].max(),cmap=cmap,vmax=vmax+.1,num_colors=num_colors)
plt.plot(x,q[n,:]+n/10.0,label=str(n),color=colorVal,alpha=0.7)
ax = plt.gca()
for tic in ax.yaxis.get_major_ticks():
tic.tick1On = tic.tick2On = False
tic.label1On = tic.label2On = False
if cmap is not None:
scalar = get_smap(vmax=q[:,:].max()+.1,num_colors=sampling)
cbar = plt.colorbar(scalar)
plt.xlabel('$x\quad (a.u.)$')
cbar.set_label(cbar_label)
plt.draw()
plt.savefig(os.path.join(outdir,outname+'.'+format),format=format,dpi=320,bbox_inches='tight')
plt.close()
return
示例13: graphical_test
def graphical_test(satisfactory=0):
from matplotlib import cm, pylab
def cons():
return np.random.random(2)*4-2
def foo(x,y,a,b):
"banana function"
tmp=a-x
tmp*=tmp
out=-x*x
out+=y
out*=out
out*=b
out+=tmp
return out*(abs(np.cos((x-1)**2+(y-1)**2))+10.0/b)
def f(params):
return foo(params[0], params[1],1,100)
optimizer=optimize(f, cons, verbose=False,its=1, hillWalks=0, satisfactory=satisfactory, finalWalk=0)
bgx,bgy=np.mgrid[-2:2:1000j,-2:2:1000j]
bg=foo(bgx,bgy, 1,100)
for i in xrange(20):
pylab.clf()
pylab.imshow(bg, cmap=cm.RdBu,vmax=bg.mean()/10)
for x in optimizer.pool: pylab.plot((x[2]+2)/4*1000,(x[1]+2)/4*1000, ('gx'))
print optimizer.pool[0],optimizer.muterate
pylab.gca().set_xbound(0,1000)
pylab.gca().set_ybound(0,1000)
pylab.draw()
pylab.colorbar()
optimizer.run()
raw_input('enter to advance')
return optimizer
示例14: ttplot
def ttplot(corfp,srp,slp,n,I1,I2):
global tplot_cum,dt,firstfile
tplot=time.time()
rchplot=int(ceil(log(n/chn)/log(2))+1)
normplot=zeros((1,rcr),dtype=float32)
for ir in xrange(rchplot):
if ir==0:
normplot[0,:chn]=1./arange(n-2,n-chn-2,-1)
else:
normplot[0,chn2*(ir+1.):chn2*(ir+2.)]=1./arange((n-1)/(2**ir)-chn2-1,(n-1)/(2**ir)-chn-1,-1)
indt=int(chn+chn2*log(n/chn)/log(2))-2
cc1=corfp[0,:indt]/(slp[0,:indt]*srp[0,:indt])/normplot[0,:indt]
cc2=corfp[-1,:indt]/(slp[-1,:indt]*srp[-1,:indt])/normplot[0,:indt]
t_axis=lag[0,:indt]
t_axis2=tI_avg[0,:n]
t_axis2b=tI_avg[0,:n]/dt+firstfile
lm1.set_data(t_axis,cc1)
lm2.set_data(t_axis2,I1)
lm1b.set_data(t_axis,cc2)
lm2b.set_data(t_axis2b,I2)
ax1.set_xlim(min(t_axis),max(t_axis))
ax1.set_ylim(min(cc1),max(cc1))
ax1b.set_ylim(min(cc2),max(cc2))
ax2.set_xlim(min(t_axis2),max(t_axis2))
ax2b.set_xlim(min(t_axis2b),max(t_axis2b))
ax2.set_ylim(min(I1),max(I1))
ax2b.set_ylim(min(I2),max(I2))
p.draw()
tplot_cum+=time.time()-tplot
return
示例15: plot
def plot(y, function):
""" Show an animation of Poincare plot.
--- arguments ---
y: A list of initial values
function: function which is argument of Runge-Kutta solver
"""
h = dt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.grid()
time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes)
plt.ion()
for i in range(nmax + 1):
for j in range(nstep):
rk4 = RK.RK4(function)
y = rk4.solve(y, j * h, h)
# -pi <= theta <= pi
while y[0] > pi:
y[0] = y[0] - 2 * pi
while y[0] < -pi:
y[0] = y[0] + 2 * pi
if ntransient <= i < nmax: # <-- draw the poincare plots
plt.scatter(y[0], y[1], s=2.0, marker='o', color='blue')
time_text.set_text('n = %d' % i)
plt.draw()
if i == nmax: # <-- to stop the interactive mode
plt.ioff()
plt.scatter(y[0], y[1], s=2.0, marker='o', color='blue')
time_text.set_text('n = %d' % i)
plt.show()