本文整理汇总了Python中matplotlib.pylab.contourf函数的典型用法代码示例。如果您正苦于以下问题:Python contourf函数的具体用法?Python contourf怎么用?Python contourf使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了contourf函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: perform_interpolation
def perform_interpolation(self,dataextrap,regridme,field_src,field_target,use_locstream):
data = self.allocate()
if self.geometry == 'surface':
for kz in _np.arange(self.nz):
field_src.data[:] = dataextrap[kz,:,:].transpose()
field_target = regridme(field_src, field_target)
if use_locstream:
if self.nx == 1:
data[kz,:,0] = field_target.data.copy()
elif self.ny == 1:
data[kz,0,:] = field_target.data.copy()
else:
data[kz,:,:] = field_target.data.transpose()[self.jmin:self.jmax+1, \
self.imin:self.imax+1]
if self.debug and kz == 0:
data_target_plt = _np.ma.masked_values(data[kz,:,:],self.xmsg)
#data_target_plt = _np.ma.masked_values(field_target.data,self.xmsg)
_plt.figure() ; _plt.contourf(data_target_plt[:,:],40) ; _plt.colorbar() ;
_plt.title('regridded') ; _plt.show()
elif self.geometry == 'line':
field_src.data[:] = dataextrap[:,:].transpose()
field_target = regridme(field_src, field_target)
if use_locstream:
data[:,:] = _np.reshape(field_target.data.transpose(),(self.ny,self.nx))
else:
data[:,:] = field_target.data.transpose()[self.jmin:self.jmax+1,self.imin:self.imax+1]
return data
示例2: main_k_nearest_neighbour
def main_k_nearest_neighbour(k):
X, y = make_blobs(n_samples=100,
n_features=2,
centers=2,
cluster_std=1.0,
center_box=(-10.0, 10.0))
h = .4
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
z = np.c_[xx.ravel(), yy.ravel()]
z_f = []
for i_z in z:
z_f.append(k_nearest_neighbour(X, y, i_z, k, False))
zz = np.array(z_f).reshape(xx.shape)
plt.figure()
plt.contourf(xx, yy, zz, cmap=plt.cm.Paired)
plt.axis('tight')
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.show()
示例3: plot
def plot(x,y,field,filename,c=200):
plt.figure()
# define grid.
xi = np.linspace(min(x),max(x),100)
yi = np.linspace(min(y),max(y),100)
# grid the data.
si_lin = griddata((x, y), field, (xi[None,:], yi[:,None]), method='linear')
si_cub = griddata((x, y), field, (xi[None,:], yi[:,None]), method='linear')
print np.min(field)
print np.max(field)
plt.subplot(211)
# contour the gridded data, plotting dots at the randomly spaced data points.
CS = plt.contour(xi,yi,si_lin,c,linewidths=0.5,colors='k')
CS = plt.contourf(xi,yi,si_lin,c,cmap=plt.cm.jet)
plt.colorbar() # draw colorbar
# plot data points.
# plt.scatter(x,y,marker='o',c='b',s=5)
plt.xlim(min(x),max(x))
plt.ylim(min(y),max(y))
plt.title('Lineaarinen interpolointi')
#plt.tight_layout()
plt.subplot(212)
# contour the gridded data, plotting dots at the randomly spaced data points.
CS = plt.contour(xi,yi,si_cub,c,linewidths=0.5,colors='k')
CS = plt.contourf(xi,yi,si_cub,c,cmap=plt.cm.jet)
plt.colorbar() # draw colorbar
# plot data points.
# plt.scatter(x,y,marker='o',c='b',s=5)
plt.xlim(min(x),max(x))
plt.ylim(min(y),max(y))
plt.title('Kuubinen interpolointi')
plt.savefig(filename)
示例4: plot_decision_surface
def plot_decision_surface(axes, clusters, X, Y=None):
import matplotlib.pylab as pylab
import numpy as np
def kmeans_predict(clusters, X):
from ..core import distance
dist_m = distance.minkowski_dist(clusters, X)
print 'dist_m:', dist_m.shape
pred = np.argmin(dist_m, axis=0)
print 'pred:', pred.shape
return pred
# step size in the mesh
h = (np.max(X, axis=0) - np.min(X, axis=0)) / 100.0
# create a mesh to plot in
x_min = np.min(X, axis=0) - 1
x_max = np.max(X, axis=0) + 1
xx, yy = np.meshgrid(np.arange(x_min[0], x_max[0], h[0]),
np.arange(x_min[1], x_max[1], h[1]))
Z = kmeans_predict(clusters, np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
pylab.set_cmap(pylab.cm.Paired)
pylab.axes(axes)
pylab.contourf(xx, yy, Z, cmap=pylab.cm.Paired)
pylab.xlim(np.min(xx), np.max(xx))
pylab.ylim(np.min(yy), np.max(yy))
#pylab.axis('off')
# Plot also the training points
if Y is not None:
pylab.scatter(X[:,0], X[:,1], c=Y)
else:
pylab.scatter(X[:,0], X[:,1])
pylab.scatter(clusters[:,0], clusters[:,1], s=200, marker='x', color='white')
示例5: plot_electric_field
def plot_electric_field(self,sp=10,scales = 500000,cont_scale=90,savefigs = False):
fig = plt.figure(figsize=(7.0, 7.0))
xplot = self.x*1e6
yplot = self.y*1e6
X,Y = np.meshgrid(xplot,yplot)
try:
plt.contourf(X,Y,self.mode_field,cont_scale)
except AttributeError:
raise NotImplementedError("interpolate before plotting")
plt.quiver(X[::sp,::sp], Y[::sp,::sp], np.real(self.E[::sp,::sp,0]), np.real(self.E[::sp,::sp,1]),scale = scales,headlength=7)
plt.xlabel(r'$x(\mu m)$')
plt.ylabel(r'$y(\mu m)$')
#plt.title(r'mode$=$'+str(self.mode)+', '+' $n_{eff}=$'+str(self.neff.real)+str(self.neff.imag)+'j')
if savefigs == True:
plt.savefig('mode'+str(self.mode)+'.eps',bbox_inches ='tight')
D = {}
D['X'] = X
D['Y'] = Y
D['Z'] = self.mode_field
D['u'] = np.real(self.E[::sp,::sp,0])
D['v'] = np.real(self.E[::sp,::sp,1])
D['scale'] = scales
D['cont_scale'] = 90
D['sp'] = sp
savemat('mode'+str(self.mode)+'.mat',D)
return None
示例6: drown_field
def drown_field(self,data,mask,drown):
''' drown_field is a wrapper around the fortran code fill_msg_grid.
depending on the output geometry, applies land extrapolation on 1 or N levels'''
if self.geometry == 'surface':
for kz in _np.arange(self.nz):
tmpin = data[kz,:,:].transpose()
if self.debug and kz == 0:
tmpin_plt = _np.ma.masked_values(tmpin,self.xmsg)
_plt.figure() ; _plt.contourf(tmpin_plt.transpose(),40) ; _plt.colorbar() ;
_plt.title('normalized before drown')
if drown == 'ncl':
tmpout = _fill.mod_poisson.poisxy1(tmpin,self.xmsg, self.guess, self.gtype, \
self.nscan, self.epsx, self.relc)
elif drown == 'sosie':
tmpout = _mod_drown_sosie.mod_drown.drown(self.kew,tmpin,mask[kz,:,:].T,\
nb_inc=200,nb_smooth=40)
data[kz,:,:] = tmpout.transpose()
if self.debug and kz == 0:
_plt.figure() ; _plt.contourf(tmpout.transpose(),40) ; _plt.colorbar() ;
_plt.title('normalized after drown')
_plt.show()
elif self.geometry == 'line':
tmpin = data[:,:].transpose()
if drown == 'ncl':
tmpout = _fill.mod_poisson.poisxy1(tmpin,self.xmsg, self.guess, self.gtype, \
self.nscan, self.epsx, self.relc)
elif drown == 'sosie':
tmpout = _mod_drown_sosie.mod_drown.drown(self.kew,tmpin,mask[:,:].T,\
nb_inc=200,nb_smooth=40)
data[:,:] = tmpout.transpose()
return data
示例7: plot_field
def plot_field(self,x,y,u=None,v=None,F=None,contour=False,outdir=None,plot='quiver',figname='_field',format='eps'):
outdir = self.set_dir(outdir)
p = 64
if F is None: F=self.calc_F(u,v)
plt.close('all')
plt.figure()
#fig, axes = plt.subplots(nrows=1)
if contour:
plt.hold(True)
plt.contourf(x,y,F)
if plot=='quiver':
plt.quiver(x[::p],y[::p],u[::p],v[::p],scale=0.1)
if plot=='pcolor':
plt.pcolormesh(x[::4],y[::4],F[::4],cmap=plt.cm.Pastel1)
plt.colorbar()
if plot=='stream':
speed = F[::16]
plt.streamplot(x[::16], y[::16], u[::16], v[::16], density=(1,1),color='k')
plt.xlabel('$x$ (a.u.)')
plt.ylabel('$y$ (a.u.)')
plt.savefig(os.path.join(outdir,figname+'.'+format),format=format,dpi=320,bbox_inches='tight')
plt.close()
示例8: plot_electric
def plot_electric(x,y,u,w,beta,a,V,Delta):
ele = np.zeros([3,len(x),len(y)],dtype=np.complex128)
for i,xx in enumerate(x):
for j, yy in enumerate(y):
ele[:,i,j] = electric_field(xx,yy,u,w,beta,a,V,0,0,Delta)
abss = (np.abs(ele[0,:,:])**2 + np.abs(ele[1,:,:])**2 + np.abs(ele[2,:,:])**2)**0.5
X,Y = np.meshgrid(x,y)
fig = plt.figure()
plt.contourf(X,Y,abss)
plt.show()
return 0
示例9: plot
def plot(self,key='AOD'):
"""
Create a plot of a variable over the ORACLES study area.
Parameters
----------
key : string
See names for available datasets to plot.
Modification history
--------------------
Written: Michael Diamond, 08/16/2016, Seattle, WA
Modified: Michael Diamond, 08/21/2016
-Added ORACLES routine flight plan, Walvis Bay (orange), and Ascension Island
Modified: Michael Diamond, 09/02/2016, Swakopmund, Namibia
-Updated flight track
"""
plt.clf()
size = 16
font = 'Arial'
m = Basemap(llcrnrlon=self.lon.min(),llcrnrlat=self.lat.min(),urcrnrlon=self.lon.max(),\
urcrnrlat=self.lat.max(),projection='merc',resolution='i')
m.drawparallels(np.arange(-180,180,5),labels=[1,0,0,0],fontsize=size,fontname=font)
m.drawmeridians(np.arange(0,360,5),labels=[1,1,0,1],fontsize=size,fontname=font)
m.drawmapboundary(linewidth=1.5)
m.drawcoastlines()
m.drawcountries()
m.drawmapboundary(fill_color='steelblue')
m.fillcontinents(color='floralwhite',lake_color='steelblue',zorder=0)
if key == 'AOD':
m.pcolormesh(self.lon,self.lat,self.ds['%s' % key],cmap=self.colors['%s' % key],\
latlon=True,vmin=self.v['%s' % key][0],vmax=self.v['%s' % key][1])
cbar = m.colorbar()
cbar.ax.tick_params(labelsize=size-2)
cbar.set_label('[%s]' % self.units['%s' % key],fontsize=size,fontname=font)
elif key == 'ATYP':
m.pcolormesh(self.lon,self.lat,self.ds['%s' % key],cmap=self.colors['%s' % key],\
latlon=True,vmin=self.v['%s' % key][0],vmax=self.v['%s' % key][1])
plt.contourf(np.array(([5,1],[3,2])),cmap=self.colors['%s' % key],levels=[0,1,2,3,4,5])
cbar = m.colorbar(ticks=[0,1,2,3,4,5])
cbar.ax.set_yticklabels(['Sea Salt','Sulphate','Organic C','Black C','Dust'])
cbar.ax.tick_params(labelsize=size-2)
else:
print('Error: Invalid key. Check names for available datasets.')
m.scatter(14.5247,-22.9390,s=250,c='orange',marker='D',latlon=True)
m.scatter(-14.3559,-7.9467,s=375,c='c',marker='*',latlon=True)
m.scatter(-5.7089,-15.9650,s=375,c='chartreuse',marker='*',latlon=True)
m.plot([14.5247,13,0],[-22.9390,-23,-10],c='w',linewidth=5,linestyle='dashed',latlon=True)
m.plot([14.5247,13,0],[-22.9390,-23,-10],c='k',linewidth=3,linestyle='dashed',latlon=True)
plt.title('%s from MSG SEVIRI on %s/%s/%s at %s UTC' % \
(self.names['%s' % key],self.month,self.day,self.year,self.time),fontsize=size+4,fontname=font)
plt.show()
示例10: Decision_Surface
def Decision_Surface(data, target, model, surface=True, probabilities=False, cell_size=.01):
# Get bounds
x_min, x_max = data[data.columns[0]].min(), data[data.columns[0]].max()
y_min, y_max = data[data.columns[1]].min(), data[data.columns[1]].max()
# Create a mesh
xx, yy = np.meshgrid(np.arange(x_min, x_max, cell_size), np.arange(y_min, y_max, cell_size))
meshed_data = pd.DataFrame(np.c_[xx.ravel(), yy.ravel()])
# Add interactions
for i in range(data.shape[1]):
if i <= 1:
continue
meshed_data = np.c_[meshed_data, np.power(xx.ravel(), i)]
if model != None:
# Predict on the mesh
if probabilities:
Z = model.predict_proba(meshed_data)[:, 1].reshape(xx.shape)
else:
Z = model.predict(meshed_data).reshape(xx.shape)
# Plot mesh and data
if data.shape[1] > 2:
plt.title("humor^(" + str(range(1,data.shape[1])) + ") and number_pets")
else:
plt.title("humor and number_pets")
plt.xlabel("humor")
plt.ylabel("number_pets")
if surface and model != None:
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.coolwarm, alpha=0.4)
color = ["blue" if t == 0 else "red" for t in target]
plt.scatter(data[data.columns[0]], data[data.columns[1]], color=color)
示例11: plot_contour
def plot_contour(z,x,y,title="TITLE",xtitle="",ytitle="",xrange=None,yrange=None,plot_points=0,contour_levels=20,
cmap=None,cbar=True,fill=False,cbar_title="",show=1):
fig = plt.figure()
if fill:
fig = plt.contourf(x, y, z.T, contour_levels, cmap=cmap, origin='lower')
else:
fig = plt.contour( x, y, z.T, contour_levels, cmap=cmap, origin='lower')
if cbar:
cbar = plt.colorbar(fig)
cbar.ax.set_ylabel(cbar_title)
plt.title(title)
plt.xlabel(xtitle)
plt.ylabel(ytitle)
# the scatter plot:
if plot_points:
axScatter = plt.subplot(111)
axScatter.scatter( np.outer(x,np.ones_like(y)), np.outer(np.ones_like(x),y))
# set axes range
plt.xlim(xrange)
plt.ylim(yrange)
if show:
plt.show()
return fig
示例12: Plot2DwSVM
def Plot2DwSVM(datax, datay):
"""
plot data and corresponding SVM results.
"""
clf = svm.SVC()
clf.fit(datax, datay)
step = 0.02
x_min, x_max = datax[:,0].min(), datax[:,0].max()
y_min, y_max = datax[:,1].min(), datax[:,1].max()
xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, step), numpy.arange(y_min, y_max, step))
Z = clf.decision_function(numpy.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
pylab.contourf(xx, yy, Z, 10, cmap=pylab.cm.Oranges)
pylab.scatter(datax[datay == 1,0], datax[datay == 1,1], c='b', s=50)
pylab.scatter(datax[datay != 1,0], datax[datay != 1,1], c='r', s=50)
pylab.show()
示例13: Decision_Surface
def Decision_Surface(X, target, model, cell_size=.01, surface=True, points=True):
# Get bounds
x_min, x_max = X[:, 0].min(), X[:, 0].max()
y_min, y_max = X[:, 1].min(), X[:, 1].max()
# Create a mesh
xx, yy = np.meshgrid(np.arange(x_min, x_max, cell_size), np.arange(y_min, y_max, cell_size))
meshed_data = pd.DataFrame(np.c_[xx.ravel(), yy.ravel()])
# Add interactions
for i in range(X.shape[1]):
if i <= 1:
continue
meshed_data = np.c_[meshed_data, np.power(xx.ravel(), i)]
Z_flat = model.predict(meshed_data)
Z = Z_flat.reshape(xx.shape)
# Plot mesh and data
plt.title("humor and number_pets")
plt.xlabel("humor")
plt.ylabel("number_pets")
if surface:
cs = plt.contourf(xx, yy, Z, color=colorizer(Z_flat))
if points:
plt.scatter(X[:, 0], X[:, 1], color=colorizer(target), linewidth=0, s=20)
plt.xlabel("Feature 1")
plt.xlabel("Feature 2")
plt.show()
示例14: plot
def plot(AB_final,lams,lamp2,title):
X,Y = np.meshgrid(lams,lamp2)
Z = AB_final
fig = plt.figure()
ax = fig.gca(projection='3d')
plt.gca().get_xaxis().get_major_formatter().set_useOffset(False)
plt.gca().get_yaxis().get_major_formatter().set_useOffset(False)
plt.title(title)
ax.set_xlabel(r'$\lambda_p(\mu m)$')
ax.set_ylabel(r'$\lambda_s(\mu m)$')
ax.set_zlabel(r'$P_{idler}(dBm)$')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet, linewidth=0, antialiased=False)
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
fig = plt.figure()
axi = plt.contourf(X,Y,Z, cmap=cm.jet)
plt.gca().get_xaxis().get_major_formatter().set_useOffset(False)
plt.gca().get_yaxis().get_major_formatter().set_useOffset(False)
plt.xlabel(r'$\lambda_p(\mu m)$')
plt.ylabel(r'$\lambda_s(\mu m)$')
plt.title(title)
fig.colorbar(axi, shrink=0.5, aspect=5)
plt.show()
return 0
示例15: contour
def contour(X,Y,Z,
extent=None, vrange=None, levels=None, extend='both',
inaxis=None,
cmap=None, addcolorbar=True, clabel=None,
smooth=True, smoothlen=None):
'''Build a super fancy contour image'''
# Build up some nice ranges and levels to be plotted
XX, YY = _getmesh(X,Y,Z)
extent = _getextent(extent, XX, YY)
vrange = _getvrange(vrange, XX,YY,Z, inaxis=inaxis)
levels = _getlevels(levels, vrange)
cmap = _getcmap(cmap)
# Smooth if needed
if smooth:
X,Y,Z = _smooth(X,Y,Z, smoothlen)
cs = pylab.contourf(X, Y, Z, levels,
vmin=vrange[0], vmax=vrange[1],
extent=extent, extend='both',
cmap=cmap)
ccs = pylab.contour(X, Y, Z, levels, vmin=vrange[0], vmax=vrange[1],
cmap=cmap)
# setup a colorbar, add in the lines, and then return it all out.
if addcolorbar:
cb = colorbar(cs, ccs, levels=levels, clabel=clabel)
return cs, ccs, cb
return cs, ccs