本文整理汇总了Python中matplotlib.pylab.colorbar函数的典型用法代码示例。如果您正苦于以下问题:Python colorbar函数的具体用法?Python colorbar怎么用?Python colorbar使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了colorbar函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot
def plot(coefs_files, digit=0, mixture=0, axis=0):
import numpy as np
import matplotlib.pylab as plt
import amitgroup as ag
for coefs_file in coefs_files:
coefs_data = np.load(coefs_file)
var = coefs_data['prior_var']
samples = coefs_data['samples']
llh_var = coefs_data['llh_var']
var_flat = ag.util.wavelet.smart_flatten(var[digit,mixture,axis])
last_i = len(var_flat)-1
plt.xlim((0, last_i))
#imdef = ag.util.DisplacementFieldWavelet((32, 32), 'db4', penalty=100
if len(coefs_files) == 1:
add = ""
else:
add = " ({0})".format(coefs_file.name)
plt.subplot(121)
plt.semilogy(1/var_flat, label="ML"+add)
plt.legend(loc=0)
plt.xlabel('Coefficient')
plt.ylabel('Precision $\lambda$')
plt.xlim((0, 63))
plt.subplot(122)
plt.imshow(1/llh_var[digit,mixture], interpolation='nearest')
plt.xlabel("Likelihood precision $\lambda'$")
plt.colorbar()
plt.show()
示例2: plot_grid_experiment_results
def plot_grid_experiment_results(grid_results, params, metrics):
global plt
params = sorted(params)
grid_params = grid_results.grid_params
plt.figure(figsize=(8, 6))
for metric in metrics:
grid_params_shape = [len(grid_params[k]) for k in sorted(grid_params.keys())]
params_max_out = [(1 if k in params else 0) for k in sorted(grid_params.keys())]
results = np.array([e.results.get(metric, 0) for e in grid_results.experiments])
results = results.reshape(*grid_params_shape)
for axis, included_in_params in enumerate(params_max_out):
if not included_in_params:
results = np.apply_along_axis(np.max, axis, results)
print results
params_shape = [len(grid_params[k]) for k in sorted(params)]
results = results.reshape(*params_shape)
if len(results.shape) == 1:
results = results.reshape(-1,1)
import matplotlib.pylab as plt
#f.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95)
plt.imshow(results, interpolation='nearest', cmap=plt.cm.hot)
plt.title(str(grid_results.name) + " " + metric)
if len(params) == 2:
plt.xticks(np.arange(len(grid_params[params[1]])), grid_params[params[1]], rotation=45)
plt.yticks(np.arange(len(grid_params[params[0]])), grid_params[params[0]])
plt.colorbar()
plt.show()
示例3: plot_bernoulli_matrix
def plot_bernoulli_matrix(self, show_npfs=False):
"""
Plot the heatmap of the Bernoulli matrix
@self
@show_npfs - Highlight NPFS detections [Boolean]
"""
matrix = self.Bernoulli_matrix
if show_npfs == False:
plot = plt.imshow(matrix)
plot.set_cmap('hot')
plt.colorbar()
plt.xlabel("Bootstraps")
plt.ylabel("Feature")
plt.show()
else:
for i in self.selected_features:
for k in range(len(matrix[i])):
matrix[i,k] = .5
plot = plt.imshow(matrix)
plot.set_cmap('hot')
plt.xlabel("Bootstraps")
plt.ylabel("Feature")
plt.colorbar()
plt.show()
return None
示例4: plotscalefactors
def plotscalefactors(self):
'''
Plots the distribution of scalefactors between consecutive images.
This is to check manually that the hdr image assembly is done correctly.
'''
import matplotlib.pylab as plt
print('Scalefactors for HDR-assembling are', self.scalefactors)
print('Standard deviations for Scalefactors are', self.scalefactorsstd)
# Plots the scalefactordistribution and scalefactors for each pixelvalue
self.scaleforpix = range(len(self.raw))
for n in range(len(self.raw) - 1):
A = self.getimgquotient(n)
B = self._getrealimg(n + 1)
fig = plt.figure()
plt.xlabel('x [pixel]')
plt.ylabel('y [pixel]')
fig.set_size_inches(10, 10)
plt.imshow(A)
plt.clim([0.95 * A[np.isfinite(A)].min(), 1.05 * A[np.isfinite(A)].max()])
plt.colorbar()
fig = plt.figure()
linplotdata = np.array([B[np.isfinite(B)].flatten(), A[np.isfinite(B)].flatten()])
plt.plot(linplotdata[0, :], linplotdata[1, :], 'ro')
示例5: XXtest5_regrid
def XXtest5_regrid(self):
srcF = cdms2.open(sys.prefix + \
'/sample_data/so_Omon_ACCESS1-0_historical_r1i1p1_185001-185412_2timesteps.nc')
so = srcF('so')[0, 0, ...]
clt = cdms2.open(sys.prefix + '/sample_data/clt.nc')('clt')
dstData = so.regrid(clt.getGrid(),
regridTool = 'esmf',
regridMethod='conserve')
if self.pe == 0:
dstDataMask = (dstData == so.missing_value)
dstDataFltd = dstData * (1 - dstDataMask)
zeroValCnt = (dstData == 0).sum()
if so.missing_value > 0:
dstDataMin = dstData.min()
dstDataMax = dstDataFltd.max()
else:
dstDataMin = dstDataFltd.min()
dstDataMax = dstData.max()
zeroValCnt = (dstData == 0).sum()
print 'Number of zero valued cells', zeroValCnt
print 'min/max value of dstData: %f %f' % (dstDataMin, dstDataMax)
self.assertLess(dstDataMax, so.max())
if False:
pylab.figure(1)
pylab.pcolor(so, vmin=20, vmax=40)
pylab.colorbar()
pylab.title('so')
pylab.figure(2)
pylab.pcolor(dstData, vmin=20, vmax=40)
pylab.colorbar()
pylab.title('dstData')
示例6: reconstructContactMap
def reconstructContactMap(map, datavec):
""" Plots a given vector as a contact map
Parameters
----------
map : np.ndarray 2D
The map from a MetricData object
datavec : np.ndarray
The data we want to plot in a 2D map
"""
map = np.array(map, dtype=int)
atomidx = np.unique(map.flatten()).astype(int)
mask = np.zeros(max(atomidx)+1, dtype=int)
mask[atomidx] = range(len(atomidx))
# Create a new map which maps from vector indexes to matrix indexes
newmap = np.zeros(np.shape(map), dtype=int)
newmap[:, 0] = mask[map[:, 0]]
newmap[:, 1] = mask[map[:, 1]]
contactmap = np.zeros((len(atomidx), len(atomidx)))
for i in range(len(datavec)):
contactmap[newmap[i, 0], newmap[i, 1]] = datavec[i]
contactmap[newmap[i, 1], newmap[i, 0]] = datavec[i]
from matplotlib import pylab as plt
plt.imshow(contactmap, interpolation='nearest', aspect='equal')
plt.colorbar()
#plt.axis('off')
#plt.tick_params(axis='x', which='both', bottom='off', top='off', labelbottom='off')
#plt.tick_params(axis='y', which='both', left='off', right='off', labelleft='off')
plt.show()
示例7: test2_3x4_to_5x7_cart
def test2_3x4_to_5x7_cart(self):
# Test non-periodic grid returning double grid resolution
roESMP = CdmsRegrid(self.fromGrid3x4, self.toGrid5x7,
dtype = self.data3x4.dtype,
srcGridMask = self.data3x4.mask,
regridTool = 'ESMP',
periodicity = 0,
regridMethod = 'Conserve',
coordSys = 'cart')
diag = {'srcAreas':0, 'dstAreas':0,
'srcAreaFractions':0, 'dstAreaFractions':0}
ESMP5x7 = roESMP(self.data3x4, diag = diag)
dstMass = (ESMP5x7 * diag['dstAreas']).sum()
srcMass = (self.data3x4 * diag['srcAreas'] \
* diag['srcAreaFractions']).sum()
if False:
pylab.figure(1)
pylab.pcolor(self.data3x4)
pylab.colorbar()
pylab.title('original self.data3x4')
pylab.figure(2)
pylab.pcolor(ESMP5x7)
pylab.colorbar()
pylab.title('interpolated ESMP5x7')
self.assertLess(abs(srcMass - dstMass), self.eps)
self.assertEqual(self.data3x4[0,0], ESMP5x7[0,0])
self.assertEqual(1.0, ESMP5x7[0,0])
self.assertEqual(0.25, ESMP5x7[1,1])
self.assertEqual(0.0, ESMP5x7[2,2])
示例8: plot_block
def plot_block( files, m, n ):
"""
- files is directory for cell
- m starting index, n ending index
Use pylab.imshow() to plot a frame (npy array).
Note: The boundary should be removed, thus there will not be a halo
"""
#Get all frames
if os.path.isdir (files):
fdir = files + '/'
dlist = os.listdir(fdir)
frames = []
for f in dlist:
if f.endswith('npy') and not os.path.isdir(fdir+f):
frames.append(f)
else:
print 'Error - input is not a directory'
return
#Sort frames
frames . sort(key=natural_key)
stack = []
#load npy arrays
for ind in xrange(len(frames)):
if ind >= m and ind <= n:
stack.append(numpy.load(files + frames[ind]))
#Create 3d array
d = numpy.dstack(stack)
d = numpy.rollaxis(d,-1)
fig = plt.figure()
plt.title("RBC Stack")
plt.imshow(d[1])
plt.colorbar()
plt.show()
示例9: plot_prof
def plot_prof(obj):
'''Function that plots a vertical profile of scattering from
TOC to BOC.
Input: rt_layer instance object.
Output: plot of scattering.
'''
I = obj.Inodes[:,1,:] \
/ -obj.mu_s
y = np.linspace(obj.Lc, 0., obj.K+1)
x = obj.views*180./np.pi
xm = np.array([])
for i in np.arange(0,len(x)-1):
nx = x[i] + (x[i+1]-x[i])/2.
xm = np.append(xm,nx)
xm = np.insert(xm,0,0.)
xm = np.append(xm,180.)
xx, yy = np.meshgrid(xm, y)
plt.pcolormesh(xx,yy,I)
plt.colorbar()
plt.title('Canopy Fluxes')
plt.xlabel('Exit Zenith Angle')
plt.ylabel('Cumulative LAI (0=soil)')
plt.arrow(135.,3.5,0.,-3.,head_width=5.,head_length=.2,\
fc='k',ec='k')
plt.text(140.,2.5,'Downwelling Flux',rotation=90)
plt.arrow(45.,.5,0.,3.,head_width=5.,head_length=.2,\
fc='k',ec='k')
plt.text(35.,2.5,'Upwelling Flux',rotation=270)
plt.show()
示例10: plotWeightChanges
def plotWeightChanges():
if f.usestdp:
# create plot
figh = figure(figsize=(1.2*8,1.2*6))
figh.subplots_adjust(left=0.02) # Less space on left
figh.subplots_adjust(right=0.98) # Less space on right
figh.subplots_adjust(top=0.96) # Less space on bottom
figh.subplots_adjust(bottom=0.02) # Less space on bottom
figh.subplots_adjust(wspace=0) # More space between
figh.subplots_adjust(hspace=0) # More space between
h = axes()
# create data matrix
wcs = [x[-1][-1] for x in f.allweightchanges] # absolute final weight
wcs = [x[-1][-1]-x[0][-1] for x in f.allweightchanges] # absolute weight change
pre,post,recep = zip(*[(x[0],x[1],x[2]) for x in f.allstdpconndata])
ncells = int(max(max(pre),max(post))+1)
wcmat = zeros([ncells, ncells])
for iwc,ipre,ipost,irecep in zip(wcs,pre,post,recep):
wcmat[int(ipre),int(ipost)] = iwc *(-1 if irecep>=2 else 1)
# plot
imshow(wcmat,interpolation='nearest',cmap=bicolormap(gap=0,mingreen=0.2,redbluemix=0.1,epsilon=0.01))
xlabel('post-synaptic cell id')
ylabel('pre-synaptic cell id')
h.set_xticks(f.popGidStart)
h.set_yticks(f.popGidStart)
h.set_xticklabels(f.popnames)
h.set_yticklabels(f.popnames)
h.xaxif.set_ticks_position('top')
xlim(-0.5,ncells-0.5)
ylim(ncells-0.5,-0.5)
clim(-abs(wcmat).max(),abs(wcmat).max())
colorbar()
示例11: plot
def plot(self, normalized=False, backend=None, ax=None, **kwargs):
"""
Plots confusion matrix
"""
df = self.to_dataframe(normalized)
try:
cmap = kwargs['cmap']
except:
cmap = plt.cm.gray_r
title = self.title
if normalized:
title += " (normalized)"
if backend is None:
backend = self.backend
if backend == Backend.Matplotlib:
#if ax is None:
fig, ax = plt.subplots(figsize=(9, 8))
plt.imshow(df, cmap=cmap, interpolation='nearest') # imshow / matshow
ax.set_title(title)
tick_marks_col = np.arange(len(df.columns))
tick_marks_idx = tick_marks_col.copy()
ax.set_yticks(tick_marks_idx)
ax.set_xticks(tick_marks_col)
ax.set_xticklabels(df.columns, rotation=45, ha='right')
ax.set_yticklabels(df.index)
ax.set_ylabel(df.index.name)
ax.set_xlabel(df.columns.name)
(N_min, N_max) = (0, self.max())
if N_max > COLORBAR_TRIG:
plt.colorbar() # Continuous colorbar
else:
# Discrete colorbar
ax2 = fig.add_axes([0.93, 0.1, 0.03, 0.8])
bounds = np.arange(N_min, N_max + 2, 1)
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
cb = mpl.colorbar.ColorbarBase(ax2, cmap=cmap, norm=norm, spacing='proportional', ticks=bounds, boundaries=bounds, format='%1i')
return(ax)
elif backend == Backend.Seaborn:
import seaborn as sns
ax = sns.heatmap(df, **kwargs)
return(ax)
# You should test this yourself
# because I'm facing an issue with Seaborn under Mac OS X (2015-04-26)
# RuntimeError: Cannot get window extent w/o renderer
#sns.plt.show()
else:
raise(NotImplementedError("backend=%r not allowed" % backend))
示例12: plotConn
def plotConn():
# Create plot
figh = figure(figsize=(8,6))
figh.subplots_adjust(left=0.02) # Less space on left
figh.subplots_adjust(right=0.98) # Less space on right
figh.subplots_adjust(top=0.96) # Less space on bottom
figh.subplots_adjust(bottom=0.02) # Less space on bottom
figh.subplots_adjust(wspace=0) # More space between
figh.subplots_adjust(hspace=0) # More space between
h = axes()
totalconns = zeros(shape(f.connprobs))
for c1 in range(size(f.connprobs,0)):
for c2 in range(size(f.connprobs,1)):
for w in range(f.nreceptors):
totalconns[c1,c2] += f.connprobs[c1,c2]*f.connweights[c1,c2,w]*(-1 if w>=2 else 1)
imshow(totalconns,interpolation='nearest',cmap=bicolormap(gap=0))
# Plot grid lines
hold(True)
for pop in range(f.npops):
plot(array([0,f.npops])-0.5,array([pop,pop])-0.5,'-',c=(0.7,0.7,0.7))
plot(array([pop,pop])-0.5,array([0,f.npops])-0.5,'-',c=(0.7,0.7,0.7))
# Make pretty
h.set_xticks(range(f.npops))
h.set_yticks(range(f.npops))
h.set_xticklabels(f.popnames)
h.set_yticklabels(f.popnames)
h.xaxis.set_ticks_position('top')
xlim(-0.5,f.npops-0.5)
ylim(f.npops-0.5,-0.5)
clim(-abs(totalconns).max(),abs(totalconns).max())
colorbar()
示例13: plot
def plot(rho, u, uLB, tau, rho_history, zdjecia, image, nx, maxIter ):
# plt.figure(figsize=(15,15))
# plt.subplot(4, 1, 1)
# plt.imshow(u[1,:,0:50],vmin=-uLB*.15, vmax=uLB*.15, interpolation='none')#,cmap=cm.seismic
# plt.colorbar()
plt.rcParams["figure.figsize"] = (15,15)
plt.subplot(5, 1, 1)
plt.imshow(sqrt(u[0]**2+u[1]**2),vmin=0, vmax=uLB*1.6)#,cmap=cm.seismic
plt.colorbar()
plt.title('tau = {:f}'.format(tau))
plt.subplot(5, 1, 2)
plt.imshow(u[0,:,:30], interpolation='none')#,cmap=cm.seismicvmax=uLB*1.6,
plt.colorbar()
plt.title('tau = {:f}'.format(tau))
plt.subplot(5, 1, 3)
plt.imshow(rho, interpolation='none' )#,cmap=cm.seismic
plt.title('rho')
plt.subplot(5, 1,4)
plt.title(' history rho')
plt.plot(linspace(0,len(rho_history),len(rho_history)),rho_history)
plt.xlim([0,maxIter])
plt.subplot(5, 1,5)
plt.title(' u0 middle develop')
plt.plot(linspace(0,nx,len(u[0,20,:])), u[1,20,:])
plt.tight_layout()
plt.savefig(path.join(zdjecia,'f{0:06d}.png'.format(image)))
plt.clf();
示例14: show_slice
def show_slice(data, slice_no=0, clim=None):
""" Visualize the reconstructed slice.
Parameters
-----------
data : ndarray
3-D matrix of stacked reconstructed slices.
slice_no : scalar, optional
The index of the slice to be imaged.
"""
plt.figure(figsize=(7, 7))
if len(data.shape) is 2:
plt.imshow(data,
interpolation='none',
cmap='gray')
plt.colorbar()
elif len(data.shape) is 3:
plt.imshow(data[slice_no, :, :],
interpolation='none',
cmap='gray')
plt.colorbar()
if clim is not None:
plt.clim(clim)
plt.show()
示例15: drown_field
def drown_field(self,data,mask,drown):
''' drown_field is a wrapper around the fortran code fill_msg_grid.
depending on the output geometry, applies land extrapolation on 1 or N levels'''
if self.geometry == 'surface':
for kz in _np.arange(self.nz):
tmpin = data[kz,:,:].transpose()
if self.debug and kz == 0:
tmpin_plt = _np.ma.masked_values(tmpin,self.xmsg)
_plt.figure() ; _plt.contourf(tmpin_plt.transpose(),40) ; _plt.colorbar() ;
_plt.title('normalized before drown')
if drown == 'ncl':
tmpout = _fill.mod_poisson.poisxy1(tmpin,self.xmsg, self.guess, self.gtype, \
self.nscan, self.epsx, self.relc)
elif drown == 'sosie':
tmpout = _mod_drown_sosie.mod_drown.drown(self.kew,tmpin,mask[kz,:,:].T,\
nb_inc=200,nb_smooth=40)
data[kz,:,:] = tmpout.transpose()
if self.debug and kz == 0:
_plt.figure() ; _plt.contourf(tmpout.transpose(),40) ; _plt.colorbar() ;
_plt.title('normalized after drown')
_plt.show()
elif self.geometry == 'line':
tmpin = data[:,:].transpose()
if drown == 'ncl':
tmpout = _fill.mod_poisson.poisxy1(tmpin,self.xmsg, self.guess, self.gtype, \
self.nscan, self.epsx, self.relc)
elif drown == 'sosie':
tmpout = _mod_drown_sosie.mod_drown.drown(self.kew,tmpin,mask[:,:].T,\
nb_inc=200,nb_smooth=40)
data[:,:] = tmpout.transpose()
return data