本文整理汇总了Python中matplotlib.pylab.close函数的典型用法代码示例。如果您正苦于以下问题:Python close函数的具体用法?Python close怎么用?Python close使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了close函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: save
def save(self, out_path):
'''Saves a figure for the monitor
Args:
out_path: str
'''
plt.clf()
np.set_printoptions(precision=4)
font = {
'size': 7
}
matplotlib.rc('font', **font)
y = 2
x = ((len(self.d) - 1) // y) + 1
fig, axes = plt.subplots(y, x)
fig.set_size_inches(20, 8)
for j, (k, v) in enumerate(self.d.iteritems()):
ax = axes[j // x, j % x]
ax.plot(v, label=k)
if k in self.d_valid.keys():
ax.plot(self.d_valid[k], label=k + '(valid)')
ax.set_title(k)
ax.legend()
plt.tight_layout()
plt.savefig(out_path, facecolor=(1, 1, 1))
plt.close()
示例2: test_simple_gen
def test_simple_gen(self):
self_con = .8
other_con = 0.05
g = self.gen.gen_stoch_blockmodel(min_degree=1, blocks=5, self_con=self_con, other_con=other_con,
powerlaw_exp=2.1, degree_seq='powerlaw', num_nodes=1000, num_links=3000)
deg_hist = vertex_hist(g, 'total')
res = fit_powerlaw.Fit(g.degree_property_map('total').a, discrete=True)
print 'powerlaw alpha:', res.power_law.alpha
print 'powerlaw xmin:', res.power_law.xmin
if len(deg_hist[0]) != len(deg_hist[1]):
deg_hist[1] = deg_hist[1][:len(deg_hist[0])]
print 'plot degree dist'
plt.plot(deg_hist[1], deg_hist[0])
plt.xscale('log')
plt.xlabel('degree')
plt.ylabel('#nodes')
plt.yscale('log')
plt.savefig('deg_dist_test.png')
plt.close('all')
print 'plot graph'
pos = sfdp_layout(g, groups=g.vp['com'], mu=3)
graph_draw(g, pos=pos, output='graph.png', output_size=(800, 800),
vertex_size=prop_to_size(g.degree_property_map('total'), mi=2, ma=30), vertex_color=[0., 0., 0., 1.],
vertex_fill_color=g.vp['com'],
bg_color=[1., 1., 1., 1.])
plt.close('all')
print 'init:', self_con / (self_con + other_con), other_con / (self_con + other_con)
print 'real:', gt_tools.get_graph_com_connectivity(g, 'com')
示例3: ploter
def ploter(X,n,name,path,real_ranges = None):
'''
Graph plotting module. Very basic, so feel free to modify it.
'''
try: import matplotlib.pylab as plt
except ImportError:
print '\nMatplotlib is not installed! Either install it, or deselect graph option.\n'
return 1
lll = 1+len(X)/n
fig = plt.figure(figsize=(16,14),dpi=100)
for x in xrange(0,len(X),n):
iii = 1+x/n
ax = fig.add_subplot(lll,1,iii)
if real_ranges != None:
for p in real_ranges:
if p[0] in range(x,x+n) and p[1] in range(x,x+n): ax.axvspan(p[0]%(n), p[1]%(n), facecolor='g', alpha=0.5)
elif p[0] in range(x,x+n) and p[1] > x+n: ax.axvspan(p[0]%(n), n, facecolor='g', alpha=0.5)
elif p[0] < x and p[1] in range(x,x+n): ax.axvspan(0, p[1]%(n), facecolor='g', alpha=0.5)
elif p[0] < x and p[1] > x+n: ax.axvspan(0, n, facecolor='g', alpha=0.5)
ax.plot(X[x:x+n],'r-')
ax.set_xlim(0.,n)
ax.set_ylim(0.,1.)
ax.set_xticklabels(range(x,x+750,100)) #(x,x+n/5,x+2*n/5,x+3*n/5,x+4*n/5,x+5*n/5) )
plt.savefig(path+'HMM_'+name+'.png')
plt.close()
示例4: plot_q
def plot_q(frame,file_prefix='claw',file_format='petsc',path='./_output/',plot_pcolor=True,plot_slices=True,slices_xlimits=None):
import sys
sys.path.append('.')
import gaussian_1d
sol=Solution(frame,file_format=file_format,read_aux=False,path=path,file_prefix=file_prefix)
x=sol.state.grid.x.centers
mx=len(x)
bathymetry = 0.5
eta=sol.state.q[0,:] + bathymetry
if frame < 10:
str_frame = "00"+str(frame)
elif frame < 100:
str_frame = "0"+str(frame)
else:
str_frame = str(frame)
fig = pl.figure(figsize=(40,10))
ax = fig.add_subplot(111)
ax.set_aspect(aspect=1)
ax.plot(x,eta)
#pl.title("t= "+str(sol.state.t),fontsize=20)
#pl.xticks(size=20); pl.yticks(size=20)
#pl.xlim([0, gaussian_1d.Lx])
pl.ylim([0.5, 1.0])
pl.xlim([0., 4.0])
#pl.axis('equal')
pl.savefig('./_plots/eta_'+str_frame+'_slices.png')
pl.close()
示例5: viz_birth_proposal_2D
def viz_birth_proposal_2D(curModel, newModel, ktarget, freshCompIDs,
title1='Before Birth',
title2='After Birth'):
''' Create before/after visualization of a birth move (in 2D)
'''
from ..viz import GaussViz, BarsViz
from matplotlib import pylab
fig = pylab.figure()
h1 = pylab.subplot(1,2,1)
if curModel.obsModel.__class__.__name__.count('Gauss'):
GaussViz.plotGauss2DFromHModel(curModel, compsToHighlight=ktarget)
else:
BarsViz.plotBarsFromHModel(curModel, compsToHighlight=ktarget, figH=h1)
pylab.title(title1)
h2 = pylab.subplot(1,2,2)
if curModel.obsModel.__class__.__name__.count('Gauss'):
GaussViz.plotGauss2DFromHModel(newModel, compsToHighlight=freshCompIDs)
else:
BarsViz.plotBarsFromHModel(newModel, compsToHighlight=freshCompIDs, figH=h2)
pylab.title(title2)
pylab.show(block=False)
try:
x = raw_input('Press any key to continue >>')
except KeyboardInterrupt:
import sys
sys.exit(-1)
pylab.close()
示例6: plot_BIC_score
def plot_BIC_score(BIC_SCORE, path):
xlabel('|C|')
ylabel('BIC score')
grid(True)
plot(BIC_SCORE)
savefig(os.path.join(path, 'BIC.png'))
close()
示例7: plot_running_time
def plot_running_time(running_time, path):
xlabel('|C|')
ylabel('MTV iteration in secs.')
grid(True)
plot([x for x in range(len(running_time))], running_time)
savefig(os.path.join(path, 'running_time.png'))
close()
示例8: plot_predlinks_roc
def plot_predlinks_roc(infile, outfile):
preddf = pickle.load(open(infile, 'r'))['df']
preddf['tp'] = preddf['t_t'] / preddf['t_tot']
preddf['fp'] = preddf['f_t'] / preddf['f_tot']
preddf['frac_wrong'] = 1.0 - (preddf['t_t'] + preddf['f_f']) / (preddf['t_tot'] + preddf['f_tot'])
f = pylab.figure(figsize=(2, 2))
ax = f.add_subplot(1, 1, 1)
# group by cv set
for row_name, cv_df in preddf.groupby('cv_idx'):
cv_df_m = cv_df.groupby('pred_thold').mean().sort('fp')
ax.plot(cv_df_m['fp'], cv_df_m['tp'] , c='k', alpha=0.3)
fname = infile[0].split('-')[0]
ax.set_title(fname)
ax.set_xticks([0.0, 1.0])
ax.set_yticks([0.0, 1.0])
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
f.savefig(outfile)
pylab.close(f)
示例9: plot_df
def plot_df(self,show=False):
from matplotlib import pylab as plt
if self.afp is None:
print 'afp not initilized. call update afp'
return -1
linecords,td,df,rtn,minmaxy = self.afp
formatter = PlotDateFormatter(df.index)
#fig = plt.figure()
#ax = plt.addsubplot()
fig, ax = plt.subplots()
ax.xaxis.set_major_formatter(formatter)
ax.plot(np.arange(len(df)), df['p'])
for cord in linecords:
plt.plot(cord[0],cord[1],color='red')
fig.autofmt_xdate()
plt.xlim(-10,len(df.index) + 10)
plt.ylim(df.p.min() - 10,df.p.max() + 10)
plt.grid(ax)
#if show:
# plt.show()
#"{0}{1}.png".format("./data/",datetime.datetime.strftime(datetime.datetime.now(),'%Y%M%m%S'))
if self.plot_file:
save_path = self.plot_file.format(self.symbol)
if os.path.exists(os.path.dirname(save_path)):
plt.savefig(save_path)
plt.clf()
plt.close()
示例10: analyze
def analyze(title, x, y, func, func_title):
print('-' * 80)
print(title)
print('x: %s:%s %s' % (list(x.shape), x.dtype, [x.min(), x.max()]))
print('y: %s:%s %s' % (list(y.shape), y.dtype, [y.min(), y.max()]))
popt, pcov = curve_fit(func, x, y)
print('popt=%s' % popt)
print('pcov=\n%s' % pcov)
a, b = popt
print('a=%e' % a)
print('b=%e' % b)
print(func_title(a, b))
xf = np.linspace(x.min(), x.max(), 100)
yf = func(xf, a, b)
print('xf: %s:%s %s' % (list(xf.shape), xf.dtype, [xf.min(), xf.max()]))
print('yf: %s:%s %s' % (list(yf.shape), yf.dtype, [yf.min(), yf.max()]))
plt.title(func_title(a, b))
# plt.xlim(0, x.max())
# plt.ylim(0, y.max())
plt.semilogx(x, y, label='data')
plt.semilogx(xf, yf, label='fit')
plt.legend(loc='best')
plt.savefig('%s.png' % title)
plt.close()
示例11: check_HDF5
def check_HDF5(size=64):
"""
Plot images with landmarks to check the processing
"""
# Get hdf5 file
hdf5_file = os.path.join(data_dir, "CelebA_%s_data.h5" % size)
with h5py.File(hdf5_file, "r") as hf:
data_color = hf["training_color_data"]
data_lab = hf["training_lab_data"]
data_black = hf["training_black_data"]
for i in range(data_color.shape[0]):
fig = plt.figure()
gs = gridspec.GridSpec(3, 1)
for k in range(3):
ax = plt.subplot(gs[k])
if k == 0:
img = data_color[i, :, :, :].transpose(1,2,0)
ax.imshow(img)
elif k == 1:
img = data_lab[i, :, :, :].transpose(1,2,0)
img = color.lab2rgb(img)
ax.imshow(img)
elif k == 2:
img = data_black[i, 0, :, :] / 255.
ax.imshow(img, cmap="gray")
gs.tight_layout(fig)
plt.show()
plt.clf()
plt.close()
示例12: test_ThroughputLines
def test_ThroughputLines(self):
# # Plot Throughput Lines
required_files = [
"throughput_sep_lines_static." + img_extn,
"throughput_sep_lines_all_mobile." + img_extn
]
for f in required_files:
try:
os.remove(f)
except:
pass
cb.latexify(columns=_texcol, factor=_texfac)
for mobility in mobilities:
df = get_mobility_stats(mobility)
fig = plt.figure(facecolor='white')
ax = fig.add_subplot(1, 1, 1)
for (k, g), ls in zip(df.groupby('separation'), itertools.cycle(["-", "--", "-.", ":"])):
ax.plot(g.rate, g.throughput, label=k, linestyle=ls)
ax.legend(loc="upper left")
ax.set_xlabel("Packet Emission Rate (pps)")
ax.set_ylabel("Avg. Throughput (bps)")
fig.tight_layout()
savefig(fig,"throughput_sep_lines_{0}".format(
mobility), transparent=True, facecolor='white')
plt.close(fig)
for f in required_files:
self.assertTrue(os.path.isfile(f))
self.generated_files.append(f)
示例13: test_PhysicalNodeLayout
def test_PhysicalNodeLayout(self):
# # Graph: Physical Layout of Nodes
required_files = ["s1_layout." + img_extn]
#
for f in required_files:
try:
os.remove(f)
except:
pass
figsize = cb.latexify(columns=_texcol, factor=_texfac)
base_config = aietes.Simulation.populate_config(
aietes.Tools.get_config('bella_static.conf'),
retain_default=True
)
texify = lambda t: "${0}_{1}$".format(t[0], t[1])
node_positions = {texify(k): np.asarray(v['initial_position'], dtype=float) for k, v in
base_config['Node']['Nodes'].items() if 'initial_position' in v}
node_links = {0: [1, 2, 3], 1: [0, 1, 2, 3, 4, 5], 2: [0, 1, 5], 3: [0, 1, 4], 4: [1, 3, 5], 5: [1, 2, 4]}
fig = cb.plot_nodes(node_positions, figsize=figsize, node_links=node_links, radius=0, scalefree=True,
square=True)
fig.tight_layout(pad=0.3)
savefig(fig,"s1_layout", transparent=True)
plt.close(fig)
for f in required_files:
self.assertTrue(os.path.isfile(f))
self.generated_files.append(f)
示例14: plot_ea
def plot_ea(frame1, filt_df, dst_path, uplift_rate, riv_case):
f = plt.figure()
ax = filt_df.plot(x='ApatiteHeAge', y='Elevation', style='o-', ax=f.gca())
plt.title('Age-Elevation')
plt.xlabel('ApatiteHeAge [Ma]')
plt.ylabel('Elevation [Km]')
#tread line
sup_age, slope, r_square = find_max_treadline(filt_df, uplift_rate * np.sin(np.deg2rad(60)), riv_case)
x = filt_df[filt_df['ApatiteHeAge'] < sup_age]['ApatiteHeAge']
y = filt_df[filt_df['ApatiteHeAge'] < sup_age]['Points:2']
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
# plt.legend(point_lables, loc='best', fontsize=10)
# n = np.linspace(min(frame1[frame1['Points:2'] > min(frame1['Points:2'])]['ApatiteHeAge']), max(frame1['ApatiteHeAge']), 21)
n = np.linspace(min(filt_df[filt_df['Points:2'] >= min(filt_df['Points:2'])]['ApatiteHeAge']), max(filt_df['ApatiteHeAge']), 21)
plt.plot(n, p(n) - min(frame1['Points:2']),'-r')
ax.text(np.mean(n), np.mean(p(n) - min(frame1['Points:2'])), 'y=%.6fx + b'%(z[0]), fontsize = 20)
txs = np.linspace(np.round(min(filt_df['Elevation'])), np.ceil(max(filt_df['Elevation'])), 11)
lebs = ['0'] + [str(i) for i in txs[1:]]
plt.yticks(txs, list(reversed(lebs)))
plt.savefig(dst_path)
plt.close()
return z[0]
示例15: threeD_gridplot
def threeD_gridplot(nodes, save=False, savefile=''):
r"""Function to plot in 3D a series of grid points.
:type nodes: list of tuples
:param nodes: List of tuples of the form (lat, long, depth)
:type save: bool
:param save: if True will save without plotting to screen, if False \
(default) will plot to screen but not save
:type savefile: str
:param savefile: required if save=True, path to save figure to.
"""
lats = []
longs = []
depths = []
for node in nodes:
lats.append(float(node[0]))
longs.append(float(node[1]))
depths.append(float(node[2]))
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(lats, longs, depths)
ax.set_ylabel("Latitude (deg)")
ax.set_xlabel("Longitude (deg)")
ax.set_zlabel("Depth(km)")
ax.get_xaxis().get_major_formatter().set_scientific(False)
ax.get_yaxis().get_major_formatter().set_scientific(False)
if not save:
plt.show()
plt.close()
else:
plt.savefig(savefile)
return