本文整理汇总了Python中matplotlib.pylab.clf函数的典型用法代码示例。如果您正苦于以下问题:Python clf函数的具体用法?Python clf怎么用?Python clf使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了clf函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_call_rate
def plot_call_rate(c):
# Histogram
P.clf()
P.figure(1)
P.hist(c[:,1], normed=True)
P.xlabel('Call Rate')
P.ylabel('Portion of Variants')
P.savefig(os.environ['OBER'] + '/doc/imputation/cgi/call_rate.png')
####################################################################################
#if __name__ == '__main__':
# # Input parameters
# file_name = sys.argv[1] # Name of data file with MAF, call rates
#
# # Load data
# c = np.loadtxt(file_name, dtype=np.float16)
#
# # Breakdown by call rate (proportional to the #samples, 1415)
# plot_call_rate(c)
# h = np.histogram(c[:,1])
# a = np.flipud(np.cumsum(np.flipud(h[0])))/float(c.shape[0])
# print np.concatenate((h[1][:-1][newaxis].transpose(), a[newaxis].transpose()), axis=1)
# Breakdown by minor allele frequency
maf_n = 20
maf_bins = np.linspace(0, 0.5, maf_n + 1)
maf_bin = np.digitize(c[:,0], maf_bins)
d = c.astype(float64)
mean_call_rate = np.array([(1.*np.mean(d[maf_bin == i,1])) for i in xrange(len(maf_bins))])
P.bar(maf_bins - h, mean_call_rate, width=h)
P.figure(2)
h = (maf_bins[-1] - maf_bins[0]) / maf_n
P.bar(maf_bins - h, mean_call_rate, width=h)
P.savefig(os.environ['OBER'] + '/doc/imputation/cgi/call_rate_maf.png')
示例2: study_multiband_planck
def study_multiband_planck(quick=True):
savename = datadir+'cl_multiband.pkl'
bands = [100, 143, 217, 'mb']
if quick: cl = pickle.load(open(savename,'r'))
else:
cl = {}
mask = load_planck_mask()
mask_factor = np.mean(mask**2.)
for band in bands:
this_map = load_planck_data(band)
this_cl = hp.anafast(this_map*mask, lmax=lmax)/mask_factor
cl[band] = this_cl
pickle.dump(cl, open(savename,'w'))
cl_theory = {}
pl.clf()
for band in bands:
l_theory, cl_theory[band] = get_cl_theory(band)
this_cl = cl[band]
pl.plot(this_cl/cl_theory[band])
pl.legend(bands)
pl.plot([0,4000],[1,1],'k--')
pl.ylim(.7,1.3)
pl.ylabel('data/theory')
示例3: plot_many_corr_delta_vel
def plot_many_corr_delta_vel():
pl.clf()
leg = []
for kmax in [0.05, 0.1, 0.2, 0.5, 1., 2., 5.]:
plot_corr_delta_vel(kmin=1e-3, kmax=kmax, doclf=False)
leg.append('kmax=%0.2f'%kmax)
pl.legend(leg)
示例4: plot_mock
def plot_mock(mock):
plt.clf()
plt.plot(mock['dates'], mock['y'], marker='+', color='blue',
label='data', markersize=9)
plt.plot(mock['dates'], mock['y_without_seasonal'],
color='green', alpha=0.6, linewidth=1,
label='model without seasonal')
示例5: study_redmapper_lrg_3d
def study_redmapper_lrg_3d(hemi='north'):
# create 3d grid object
grid = grid3d(hemi=hemi)
# load SDSS data
sdss = load_sdss_data_both_catalogs(hemi)
# load redmapper catalog
rm = load_redmapper(hemi=hemi)
# get XYZ positions (Mpc) of both datasets
x_sdss, y_sdss, z_sdss = grid.xyz_from_radecz(sdss['ra'], sdss['dec'], sdss['z'], applyzcut=False)
x_rm, y_rm, z_rm = grid.xyz_from_radecz(rm['ra'], rm['dec'], rm['z_spec'], applyzcut=False)
pos_sdss = np.vstack([x_sdss, y_sdss, z_sdss]).T
pos_rm = np.vstack([x_rm, y_rm, z_rm]).T
# build a couple of KDTree's, one for SDSS, one for RM.
from sklearn.neighbors import KDTree
tree_sdss = KDTree(pos_sdss, leaf_size=30)
tree_rm = KDTree(pos_rm, leaf_size=30)
lrg_counts = tree_sdss.query_radius(pos_rm, 100., count_only=True)
pl.clf()
pl.hist(lrg_counts, bins=50)
ipdb.set_trace()
示例6: plot
def plot(self, bit_stream):
if self.previous_bit_stream != bit_stream.to_list():
self.previous_bit_stream = bit_stream
x = []
y = []
bit = None
for bit_time in bit_stream.to_list():
if bit is None:
x.append(bit_time)
y.append(0)
bit = 0
elif bit == 0:
x.extend([bit_time, bit_time])
y.extend([0, 1])
bit = 1
elif bit == 1:
x.extend([bit_time, bit_time])
y.extend([1, 0])
bit = 0
plt.clf()
plt.plot(x, y)
plt.xlim([0, 10000])
plt.ylim([-0.1, 1.1])
plt.show()
plt.pause(0.005)
示例7: PlotTurbulenceIllustr
def PlotTurbulenceIllustr(a):
"""
Can generate the grid with
g=kolmogorovutils.GenerateKolmogorov3D( 1025, 129, 129)
a=kolmogorovutils.GridToNumarray(g)
"""
for x in [1,10,100]:
suba= numarray.sum(a[:,:,0:x], axis=2)
suba.transpose()
pylab.clf()
pylab.matshow(suba)
pylab.savefig("temp/turb3d-sum%03i.eps" % x)
for x in [1,10,100]:
for j in [0,1,2]:
suba= numarray.sum(a[:,:200,j*x:(j+1)*x], axis=2)
suba.transpose()
pylab.clf()
pylab.matshow(suba)
pylab.savefig("temp/turb3d-sum%03i-s%i.eps" % (x,j))
示例8: plot_average
def plot_average(filenames, save_plot=True, show_plot=False, dpi=100):
''' Plot Signal average from a list of averaged files. '''
fname = get_files_from_list(filenames)
# plot averages
pl.ioff() # switch off (interactive) plot visualisation
factor = 1e15
for fnavg in fname:
name = fnavg[0:len(fnavg) - 4]
basename = os.path.splitext(os.path.basename(name))[0]
print fnavg
# mne.read_evokeds provides a list or a single evoked based on condition.
# here we assume only one evoked is returned (requires further handling)
avg = mne.read_evokeds(fnavg)[0]
ymin, ymax = avg.data.min(), avg.data.max()
ymin *= factor * 1.1
ymax *= factor * 1.1
fig = pl.figure(basename, figsize=(10, 8), dpi=100)
pl.clf()
pl.ylim([ymin, ymax])
pl.xlim([avg.times.min(), avg.times.max()])
pl.plot(avg.times, avg.data.T * factor, color='black')
pl.title(basename)
# save figure
fnfig = os.path.splitext(fnavg)[0] + '.png'
pl.savefig(fnfig, dpi=dpi)
pl.ion() # switch on (interactive) plot visualisation
示例9: plotFittingResults
def plotFittingResults(self):
"""
Plot results of Rmax optimization procedure and best fit of the experimental data
"""
_listFitQ = [tmp.getValue() for tmp in self.getDataOutput().getScatteringFitQ()]
_listFitValues = [tmp.getValue() for tmp in self.getDataOutput().getScatteringFitValues()]
_listExpQ = [tmp.getValue() for tmp in self.getDataInput().getExperimentalDataQ()]
_listExpValues = [tmp.getValue() for tmp in self.getDataInput().getExperimentalDataValues()]
#_listExpStdDev = None
#if self.getDataInput().getExperimentalDataStdDev():
# _listExpStdDev = [tmp.getValue() for tmp in self.getDataInput().getExperimentalDataStdDev()]
#if _listExpStdDev:
# pylab.errorbar(_listExpQ, _listExpValues, yerr=_listExpStdDev, linestyle='None', marker='o', markersize=1, label="Experimental Data")
# pylab.gca().set_yscale("log", nonposy='clip')
#else:
# pylab.semilogy(_listExpQ, _listExpValues, linestyle='None', marker='o', markersize=5, label="Experimental Data")
pylab.semilogy(_listExpQ, _listExpValues, linestyle='None', marker='o', markersize=5, label="Experimental Data")
pylab.semilogy(_listFitQ, _listFitValues, label="Fitting curve")
pylab.xlabel('q')
pylab.ylabel('I(q)')
pylab.suptitle("RMax : %3.2f. Fit quality : %1.3f" % (self.getDataInput().getRMax().getValue(), self.getDataOutput().getFitQuality().getValue()))
pylab.legend()
pylab.savefig(os.path.join(self.getWorkingDirectory(), "gnomFittingResults.png"))
pylab.clf()
示例10: plot
def plot(self,key='Re'):
"""
Create a plot of a variable over the ORACLES study area.
Parameters
----------
key : string
See names for available datasets to plot.
clf : boolean
If True, clear off pre-existing figure. If False, plot over pre-existing figure.
Modification history
--------------------
Written: Michael Diamond, 08/16/2016, Seattle, WA
Modified: Michael Diamond, 08/21/2016, Seattle, WA
-Added ORACLES routine flight plan, Walvis Bay (orange), and Ascension Island
Modified: Michael Diamond, 09/02/2016, Swakopmund, Namibia
-Updated flihgt track
"""
plt.clf()
size = 16
font = 'Arial'
m = Basemap(llcrnrlon=self.lon.min(),llcrnrlat=self.lat.min(),urcrnrlon=self.lon.max(),\
urcrnrlat=self.lat.max(),projection='merc',resolution='i')
m.drawparallels(np.arange(-180,180,5),labels=[1,0,0,0],fontsize=size,fontname=font)
m.drawmeridians(np.arange(0,360,5),labels=[1,1,0,1],fontsize=size,fontname=font)
m.drawmapboundary(linewidth=1.5)
m.drawcoastlines()
m.drawcountries()
if key == 'Pbot' or key == 'Ptop' or key == 'Nd' or key == 'DZ':
m.drawmapboundary(fill_color='steelblue')
m.fillcontinents(color='floralwhite',lake_color='steelblue',zorder=0)
else: m.fillcontinents('k',zorder=0)
if key == 'Nd':
m.pcolormesh(self.lon,self.lat,self.ds['%s' % key],cmap=self.colors['%s' % key],\
latlon=True,norm = LogNorm(vmin=self.v['%s' % key][0],vmax=self.v['%s' % key][1]))
elif key == 'Zbf' or key == 'Ztf':
levels = [0,250,500,750,1000,1250,1500,1750,2000,2500,3000,3500,4000,5000,6000,7000,8000,9000,10000]
m.contourf(self.lon,self.lat,self.ds['%s' % key],levels=levels,\
cmap=self.colors['%s' % key],latlon=True,extend='max')
elif key == 'DZ':
levels = [0,500,1000,1500,2000,2500,3000,3500,4000,4500,5000,5500,6000,6500,7000]
m.contourf(self.lon,self.lat,self.ds['%s' % key],levels=levels,\
cmap=self.colors['%s' % key],latlon=True,extend='max')
else:
m.pcolormesh(self.lon,self.lat,self.ds['%s' % key],cmap=self.colors['%s' % key],\
latlon=True,vmin=self.v['%s' % key][0],vmax=self.v['%s' % key][1])
cbar = m.colorbar()
cbar.ax.tick_params(labelsize=size-2)
cbar.set_label('[%s]' % self.units['%s' % key],fontsize=size,fontname=font)
if key == 'Pbot' or key == 'Ptop': cbar.ax.invert_yaxis()
m.scatter(14.5247,-22.9390,s=250,c='orange',marker='D',latlon=True)
m.scatter(-14.3559,-7.9467,s=375,c='c',marker='*',latlon=True)
m.scatter(-5.7089,-15.9650,s=375,c='chartreuse',marker='*',latlon=True)
m.plot([14.5247,13,0],[-22.9390,-23,-10],c='w',linewidth=5,linestyle='dashed',latlon=True)
m.plot([14.5247,13,0],[-22.9390,-23,-10],c='k',linewidth=3,linestyle='dashed',latlon=True)
plt.title('%s from MSG SEVIRI on %s/%s/%s at %s UTC' % \
(self.names['%s' % key],self.month,self.day,self.year,self.time),fontsize=size+4,fontname=font)
plt.show()
示例11: plotLSQ
def plotLSQ(C_ms,lsqSc,lsqMu,lsqSl,LSQ,viewDirectory,TextSize=16):
C_MS = C_ms - 1.0
#480x480
myfile = os.path.join(viewDirectory,'lsq.png')
title='Cumulative LSQ Penalties'
red = 'S(Q,E)'
green = 'high E scatter'
blue = 'slope of high E scatter'
xlabel = r"$C_{ms}$ [unitless]"
ylabel = "Cumulative Penalty [unitless]"
pylab.clf()
pylab.plot( C_MS, lsqSc, 'r-', linewidth=5 )
pylab.plot( C_MS, lsqMu, 'g-', linewidth=5 )
pylab.plot( C_MS, lsqSl, 'b-', linewidth=5 )
pylab.grid( 1 )
pylab.legend( (red, green, blue), loc="upper left" )
pylab.xlabel( xlabel )
pylab.ylabel( ylabel )
pylab.title(title)
pylab.savefig( myfile )
myfile = os.path.join(viewDirectory,'lsq_f.png')
pylab.clf()
title='Final Cumulative LSQ Penalty'
pylab.plot( C_MS,LSQ, 'b-', linewidth = 5)
pylab.xlabel( xlabel )
pylab.ylabel( ylabel )
pylab.title( title )
pylab.grid(1)
pylab.savefig( myfile )
return
示例12: plotRocCurves
def plotRocCurves(lesion, lesion_en):
file_legend = []
for techniqueMid in techniquesMid:
for techniqueLow in techniquesLow:
file_legend.append((directory + techniqueLow + "/" + techniqueMid + "/operating-points-" + lesion + "-scale.dat", "Low-level: " + techniqueLow + ". Mid-level: " + techniqueMid + "."))
pylab.clf()
pylab.figure(1)
pylab.xlabel('1 - Specificity', fontsize=12)
pylab.ylabel('Sensitivity', fontsize=12)
pylab.title(lesion_en)
pylab.grid(True, which='both')
pylab.xticks([i/10.0 for i in range(1,11)])
pylab.yticks([i/10.0 for i in range(0,11)])
#pylab.tick_params(axis="both", labelsize=15)
for file, legend in file_legend:
points = open(file,"rb").readlines()
x = [float(p.split()[0]) for p in points]
y = [float(p.split()[1]) for p in points]
x.append(0.0)
y.append(0.0)
auc = numpy.trapz(y, x) * -100
pylab.grid()
pylab.plot(x, y, '-', linewidth = 1.5, label = legend + u" (AUC = {0:0.1f}%)".format(auc))
pylab.legend(loc = 4, borderaxespad=0.4, prop={'size':12})
pylab.savefig(directory + "plots/" + lesion + ".pdf", format='pdf')
示例13: plot_df
def plot_df(self,show=False):
from matplotlib import pylab as plt
if self.afp is None:
print 'afp not initilized. call update afp'
return -1
linecords,td,df,rtn,minmaxy = self.afp
formatter = PlotDateFormatter(df.index)
#fig = plt.figure()
#ax = plt.addsubplot()
fig, ax = plt.subplots()
ax.xaxis.set_major_formatter(formatter)
ax.plot(np.arange(len(df)), df['p'])
for cord in linecords:
plt.plot(cord[0],cord[1],color='red')
fig.autofmt_xdate()
plt.xlim(-10,len(df.index) + 10)
plt.ylim(df.p.min() - 10,df.p.max() + 10)
plt.grid(ax)
#if show:
# plt.show()
#"{0}{1}.png".format("./data/",datetime.datetime.strftime(datetime.datetime.now(),'%Y%M%m%S'))
if self.plot_file:
save_path = self.plot_file.format(self.symbol)
if os.path.exists(os.path.dirname(save_path)):
plt.savefig(save_path)
plt.clf()
plt.close()
示例14: check_HDF5
def check_HDF5(size=64):
"""
Plot images with landmarks to check the processing
"""
# Get hdf5 file
hdf5_file = os.path.join(data_dir, "CelebA_%s_data.h5" % size)
with h5py.File(hdf5_file, "r") as hf:
data_color = hf["training_color_data"]
data_lab = hf["training_lab_data"]
data_black = hf["training_black_data"]
for i in range(data_color.shape[0]):
fig = plt.figure()
gs = gridspec.GridSpec(3, 1)
for k in range(3):
ax = plt.subplot(gs[k])
if k == 0:
img = data_color[i, :, :, :].transpose(1,2,0)
ax.imshow(img)
elif k == 1:
img = data_lab[i, :, :, :].transpose(1,2,0)
img = color.lab2rgb(img)
ax.imshow(img)
elif k == 2:
img = data_black[i, 0, :, :] / 255.
ax.imshow(img, cmap="gray")
gs.tight_layout(fig)
plt.show()
plt.clf()
plt.close()
示例15: plotMassFunction
def plotMassFunction(im, pm, outbase, mmin=9, mmax=13, mstep=0.05):
"""
Make a comparison plot between the input mass function and the
predicted projected correlation function
"""
plt.clf()
nmbins = ( mmax - mmin ) / mstep
mbins = np.logspace( mmin, mmax, nmbins )
mcen = ( mbins[:-1] + mbins[1:] ) /2
plt.xscale( 'log', nonposx = 'clip' )
plt.yscale( 'log', nonposy = 'clip' )
ic, e, p = plt.hist( im, mbins, label='Original Halos', alpha=0.5, normed = True)
pc, e, p = plt.hist( pm, mbins, label='Added Halos', alpha=0.5, normed = True)
plt.legend()
plt.xlabel( r'$M_{vir}$' )
plt.ylabel( r'$\frac{dN}{dM}$' )
#plt.tight_layout()
plt.savefig( outbase+'_mfcn.png' )
mdtype = np.dtype( [ ('mcen', float), ('imcounts', float), ('pmcounts', float) ] )
mf = np.ndarray( len(mcen), dtype = mdtype )
mf[ 'mcen' ] = mcen
mf[ 'imcounts' ] = ic
mf[ 'pmcounts' ] = pc
fitsio.write( outbase+'_mfcn.fit', mf )