本文整理汇总了Python中matplotlib.pylab.cla函数的典型用法代码示例。如果您正苦于以下问题:Python cla函数的具体用法?Python cla怎么用?Python cla使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了cla函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_timeseries
def plot_timeseries(self, ax=None, vmin=None, vmax=None,
colorbar=False, label=True):
if vmin is None:
vmin = self.vmin
if vmax is None:
vmax = self.vmax
if ax is None:
ax = plt.gca()
plt.sca(ax)
plt.cla()
plt.imshow(self.tser_arr[::-1,:], vmin=vmin, vmax=vmax,
interpolation='Nearest', extent=self.extent, origin='upper',aspect='auto')
plt.xlim(self.extent[0], self.extent[1])
plt.ylim(self.extent[2], self.extent[3])
# plt.vlines(self.ionogram_list[0].time, self.extent[2], self.extent[3], 'r')
if label:
celsius.ylabel('f / MHz')
if colorbar:
old_ax = plt.gca()
plt.colorbar(
cax = celsius.make_colorbar_cax(), ticks=self.cbar_ticks
).set_label(r"$Log_{10} V^2 m^{-2} Hz^{-1}$")
plt.sca(old_ax)
示例2: draw_heatmap
def draw_heatmap(allstats, outfigure, order=None):
conds, seqname, mean = allstats.Get(_.cond, _.seqname, _.mean)();
df = pd.DataFrame({ 'conds': conds, 'seqname': seqname, 'mean':mean})
df = df.pivot('conds', 'seqname', 'mean')
plt.cla(); plt.clf();
ax = sns.heatmap(df, center=1.0)
plt.savefig('%s/condlibratios.svg' % output_dir)
示例3: draw_lineplot
def draw_lineplot(x, y, title="title", xlab="x", ylab="y", odir="", xlim=None, ylim=None, outfmt='eps'):
if len(x) == 0 or len(y) == 0:
return;
#fi
plt.cla();
plt.plot(x, y, marker='x');
plt.xlabel(xlab);
plt.ylabel(ylab);
plt.title(title);
if xlim == None:
xmin = min(x);
xmax = max(x);
xlim = [xmin, xmax];
#fi
if ylim == None:
ymin = min(y);
ymax = max(y);
ylim = [ymin, ymax];
#fi
plt.xlim(xlim);
plt.ylim(ylim);
plt.savefig('%s%s.%s' % (odir + ('/' if odir else ""), '_'.join(title.split(None)), outfmt), format=outfmt);
return '%s.%s' % ('_'.join(title.split(None)), outfmt), title;
示例4: draw_light_plot
def draw_light_plot():
if "userid" not in session:
return redirect(url_for("index"))
uid = session["userid"]
if uid not in users:
return redirect(url_for("index"))
users[uid].record_as_active()
plt.cla() # Clear axis
plt.clf() # Clear figure
plt.close() # Close a figure window
# create light summary plot
fig = plt.figure()
ax = fig.add_subplot(111)
users[uid].summary.plot_light(ax)
fig.patch.set_facecolor("#fff9f0")
fig.set_size_inches(8, 8)
# post-process for html
canvas = FigureCanvas(fig)
png_output = StringIO.StringIO()
canvas.print_png(png_output)
response = make_response(png_output.getvalue())
response.headers["Content-Type"] = "image/png"
plt.cla() # Clear axis
plt.clf() # Clear figure
plt.close() # Close a figure window
return response
示例5: showSkyline
def showSkyline(l):
pylab.cla()
for tuple in l:
st = tuple[0]
end = tuple[1]
height = tuple[2]
pylab.bar(st,height,(end-st))
pylab.show()
print "Done"
示例6: draw_building_zoom
def draw_building_zoom():
if "userid" not in session:
return redirect(url_for("index"))
uid = session["userid"]
if uid not in users:
return redirect(url_for("index"))
users[uid].record_as_active()
plt.cla() # Clear axis
plt.clf() # Clear figure
plt.close() # Close a figure window
fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1])
radius = ZOOM_SIZE / 2 * 1.5
for key in users[uid].buildings:
if users[uid].obs.distance_from_building(users[uid].buildings[key]) < radius:
if key not in users[uid].building_keys_at_address:
users[uid].buildings[key].plot_footprint(ax, color="k")
else:
users[uid].buildings[key].plot_footprint(ax, color=COLOR_LIGHTBROWN)
users[uid].obs.plot_observers_location(ax, color="r")
L = ZOOM_SIZE / 2 # half size of the plotted area in meters
ax.set_xlim([users[uid].obs.x - L, users[uid].obs.x + L])
ax.set_ylim([users[uid].obs.y - L, users[uid].obs.y + L])
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
ax.axis("off")
ax.set_aspect("equal")
number_of_floors = users[uid].get_number_of_floors()
ax.text(
users[uid].obs.x,
users[uid].obs.y + L / 5,
"floors: " + str(number_of_floors),
verticalalignment=u"center",
horizontalalignment=u"center",
size="large",
color="r",
)
fig.patch.set_facecolor("#d4c3a8")
fig.set_size_inches(5, 5)
# post-process for html
canvas = FigureCanvas(fig)
png_output = StringIO.StringIO()
canvas.print_png(png_output)
response = make_response(png_output.getvalue())
response.headers["Content-Type"] = "image/png"
plt.cla() # Clear axis
plt.clf() # Clear figure
plt.close() # Close a figure window
return response
示例7: __del__
def __del__(self):
"""
Figures created through the pyplot interface
(`matplotlib.pyplot.figure`) are retained until explicitly
closed and may co nsume too much memory.
"""
plt.cla()
plt.clf()
plt.close()
示例8: plots
def plots(u,xvals,t):
plt.cla()
plt.plot(xvals,u)
plt.ylim(-0.1, 1.1)
plt.xlim( 0.0, 1.0)
plt.xlabel(r'$x$',fontsize = 15)
plt.ylabel(r'$u$',fontsize = 15)
plt.title(r'Time: $t$ = ' + str(t).ljust(4, str(0)))
plt.grid("on")
fig.canvas.draw()
return
示例9: draw_graph
def draw_graph(plot_data, rankingSystem, numberOfUv, hue):
plot_data['world_rank'] = plot_data['world_rank'].astype(int)
ax = sns.pointplot(x='year', y='world_rank', hue=hue, data=plot_data);
pylab.title("Top " + str(numberOfUv) + " university by " + rankingSystem, fontsize=26)
pylab.xticks(fontsize=20)
pylab.yticks(fontsize=20)
pylab.ylabel("World Rank", fontsize=26)
pylab.xlabel("Year", fontsize=26)
pylab.savefig('resources/images/topuv.png')
pylab.cla()
pylab.clf()
pylab.close()
示例10: mkHistogram
def mkHistogram(data,sndx):
print type(data[2])
histDat = pl.hist(data,360,normed=1,color='black',histtype='step',label='Angle %s' %(sndx))
pl.legend()
pl.xlim(-180,180)
pl.xlabel('Angle [deg.]',fontsize=16)
pl.ylabel('Probability density',fontsize=16)
pl.xticks(fontsize=12)
pl.yticks(fontsize=12)
pl.savefig('%s_hist.pdf' %(sndx))
pl.cla()
return histDat # sp.histogram(data,360)
示例11: plot_frequency_altitude
def plot_frequency_altitude(self, f=2.0, ax=None, median_filter=False,
vmin=None, vmax=None, altitude_range=(-99.9, 399.9), colorbar=False, return_image=False, annotate=True):
if vmin is None:
vmin = self.vmin
if vmax is None:
vmax = self.vmax
if ax is None:
ax = plt.gca()
plt.sca(ax)
plt.cla()
freq_extent = (self.extent[0], self.extent[1],
altitude_range[1], altitude_range[0])
i = self.ionogram_list[0]
inx = 1.0E6* (i.frequencies.shape[0] * f) / (i.frequencies[-1] - i.frequencies[0])
img = self.tser_arr_all[:,int(inx),:]
new_altitudes = np.arange(altitude_range[0], altitude_range[1], 14.)
new_img = np.zeros((new_altitudes.shape[0], img.shape[1])) + np.nan
for i in self.ionogram_list:
e = int( round((i.time - self.extent[0]) / ais_code.ais_spacing_seconds ))
pos = mex.iau_r_lat_lon_position(float(i.time))
altitudes = pos[0] - ais_code.speed_of_light_kms * ais_code.ais_delays * 0.5 - mex.mars_mean_radius_km
s = np.argsort(altitudes)
new_img[:, e] = np.interp(new_altitudes, altitudes[s], img[s,e], left=np.nan, right=np.nan)
plt.imshow(new_img, vmin=vmin, vmax=vmax,
interpolation='Nearest', extent=freq_extent, origin='upper', aspect='auto')
plt.xlim(freq_extent[0], freq_extent[1])
plt.ylim(*altitude_range)
ax.set_xlim(self.extent[0], self.extent[1])
ax.xaxis.set_major_locator(celsius.SpiceetLocator())
celsius.ylabel(r'Alt./km')
if annotate:
plt.annotate('f = %.1f MHz' % f, (0.02, 0.9),
xycoords='axes fraction', color='cyan', verticalalignment='top', fontsize='small')
if colorbar:
old_ax = plt.gca()
plt.colorbar(cax = celsius.make_colorbar_cax(), ticks=self.cbar_ticks).set_label(r"$Log_{10} V^2 m^{-2} Hz^{-1}$")
plt.sca(old_ax)
if return_image:
return new_img, freq_extent, new_altitudes
示例12: draw_gene_isoforms
def draw_gene_isoforms(D, gene_id, outfile, outfmt):
import matplotlib.patches as mpatches;
from matplotlib.collections import PatchCollection;
ISO = D[_.orig_gene == gene_id].GroupBy(_.alt_gene).Without(_.orig_gene, _.orig_exon_start, _.orig_exon_end).Sort(_.alt_gene);
plt.cla();
y_loc = 0;
y_step = 30;
n_iso = ISO.alt_gene.Shape()();
origins = np.array([ [0, y] for y in xrange((y_step * (n_iso+1)),n_iso,-y_step) ]);
patch_h = 10;
xlim = [ ISO.exon_start.Min().Min()(), ISO.exon_end.Max().Max()()];
ylim = [ y_step, (y_step * (n_iso+1)) + 2*patch_h];
patches = [];
for (origin, alt_id, starts, ends, exons, retention, alt5, alt3, skipped, new, ident) in zip(origins, *ISO()):
plt.gca().text( min(starts), origin[1] + patch_h, alt_id, fontsize=10);
for (exon_start, exon_end, exon_coverage, exon_retention, exon_alt5, exon_alt3, exon_skipped, exon_new, exon_ident) in zip(starts, ends, exons, retention, alt5, alt3, skipped, new, ident):
if not(exon_skipped):
patch = mpatches.FancyBboxPatch(origin + [ exon_start, 0], exon_end - exon_start, patch_h, boxstyle=mpatches.BoxStyle("Round", pad=0), color=draw_gene_isoforms_color(exon_retention, exon_alt5, exon_alt3, exon_skipped, exon_new, exon_ident));
text_x, text_y = origin + [ exon_start, +patch_h/2];
annots = zip(['Retention', "Alt 5'", "Alt 3'", "Skipped", 'New'], [exon_retention, exon_alt5, exon_alt3, exon_skipped, exon_new]);
text = '%s: %s' %( ','.join([str(exid) for exid in exon_coverage]), '\n'.join([ s for (s,b) in annots if b]));
plt.gca().text(text_x, text_y, text, fontsize=10, rotation=-45);
plt.gca().add_patch(patch);
if all(ident):
plt.gca().plot([exon_start, exon_start], [origin[1], 0], '--k', alpha=0.3);
plt.gca().plot([exon_end, exon_end], [origin[1], 0], '--k', alpha=0.3);
#fi
#fi
#efor
#efor
plt.xlim(xlim);
plt.ylim(ylim);
plt.title('Isoforms for gene %s' % gene_id);
plt.xlabel('Location on chromosome');
plt.gca().get_yaxis().set_visible(False);
plt.gca().spines['top'].set_color('none');
plt.gca().spines['left'].set_color('none');
plt.gca().spines['right'].set_color('none');
plt.tick_params(axis='x', which='both', top='off', bottom='on');
plt.savefig(outfile, format=outfmt);
return ISO;
示例13: drawBarAXBarChart
def drawBarAXBarChart(bar1_series, bar2_series, title, xlabel, y_bar1_label, y_bar2_label, xticklabels, bar1_label, bar2_label):
n_groups = xticklabels.size
fig, ax = plt.subplots(dpi=100, figsize=(16,8))
index = np.arange(n_groups)
bar_width = 0.25
opacity = 0.4
error_config = {'ecolor': '0.3'}
def autolabel(ax, rects):
# attach some text labels
for rect in rects:
height = rect.get_height()
ax.text(rect.get_x() + rect.get_width()/2., 1.005*height,
'%d' % int(height),
ha='center', va='bottom', fontproperties=myFont, size=tipSize-1)
rects = plt.bar(index, bar1_series, bar_width,
alpha=opacity,
color='b',
error_kw=error_config,
label=bar1_label)
autolabel(ax,rects)
plt.xlabel(xlabel, fontproperties=myFont, size=titleSize)
plt.ylabel(y_bar1_label, fontproperties=myFont, size=titleSize, color='b')
for label in ax.get_yticklabels():
label.set_color('b')
plt.title(title, fontproperties=myFont, size=titleSize)
plt.xticks(index + (1/2.)*bar_width, xticklabels, fontproperties=myFont, size=tipSize)
plt.legend(prop=font_manager.FontProperties(fname='/Library/Fonts/Songti.ttc', size=tipSize))
print 'drawNBarChart',title,'1 over'
ax1 = ax.twinx()
rects1 = plt.bar(index+1*bar_width, bar2_series, bar_width,
alpha=opacity,
color='r',
error_kw=error_config,
label=bar2_label, axes=ax1)
autolabel(ax1,rects1)
for label in ax1.get_yticklabels():
label.set_color('r')
plt.ylabel(y_bar2_label, fontproperties=myFont, size=titleSize, color='r')
plt.xticks(index + (2/2.)*bar_width, xticklabels, fontproperties=myFont, size=tipSize)
plt.legend((rects, rects1), (bar1_label, bar2_label),prop=font_manager.FontProperties(fname='/Library/Fonts/Songti.ttc', size=tipSize))
plt.tight_layout()
plt.savefig(sv_file_dir+'/'+title+'.png', format='png')
plt.cla()
plt.clf()
plt.close()
print 'drawNBarChart',title,'2 over'
示例14: drawPieChart
def drawPieChart(data, labels, title):
fig = plt.figure(dpi=100, figsize=(8,8))
# first axes
ax1 = fig.add_axes([0.1, 0.1, 0.8, 0.8])
patches, texts, autotexts = ax1.pie(data, labels=labels, autopct='%1.1f%%', colors=['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'])
plt.setp(autotexts, fontproperties=myFont, size=tipSize)
plt.setp(texts, fontproperties=myFont, size=tipSize)
ax1.set_title(title,fontproperties=myFont, size=titleSize)
ax1.set_aspect(1)
#plt.show()
plt.savefig(sv_file_dir+'/'+title+'.png', format='png')
plt.cla()
plt.clf()
plt.close()
print 'drawPieChart',title,'over'
示例15: draw_inverted_polar_plot
def draw_inverted_polar_plot():
if "userid" not in session:
return redirect(url_for("index"))
uid = session["userid"]
if uid not in users:
return redirect(url_for("index"))
users[uid].record_as_active()
plt.cla() # Clear axis
plt.clf() # Clear figure
plt.close() # Close a figure window
fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1])
users[uid].sil.draw_inverted_polar(ax, color="k")
this_year = dt.datetime.today().year
dates_to_plot = [dt.datetime(this_year, 6, 21), dt.datetime.today(), dt.datetime(this_year, 12, 22)]
morning_colors = ["#ffc469", "#fd8181", "#ffc469"]
afternoon_colors = ["#f98536", "r", "#f98536"]
labels = ["Jun 21", "today", "Dec 22"]
text_colors = ["#f98536", "r", "#f98536"]
for i in range(0, len(dates_to_plot)):
d = dates_to_plot[i]
cm = morning_colors[i]
ca = afternoon_colors[i]
ct = text_colors[i]
l = labels[i]
sun = SunPath(stepsize=SUN_STEPSIZE, lat=users[uid].obs.lat, lon=users[uid].obs.lon, date=d)
sun.calculate_path()
sun.calculate_visibility(users[uid].sil)
sun.draw_inverted_polar(ax, morning_color=cm, afternoon_color=ca, text_color=ct, label=l)
ax.axis("off")
ax.set_aspect("equal")
fig.patch.set_facecolor("#fff9f0")
fig.set_size_inches(8, 8)
# post-process for html
canvas = FigureCanvas(fig)
png_output = StringIO.StringIO()
canvas.print_png(png_output)
response = make_response(png_output.getvalue())
response.headers["Content-Type"] = "image/png"
plt.cla() # Clear axis
plt.clf() # Clear figure
plt.close() # Close a figure window
return response