本文整理汇总了Python中matplotlib.pylab.bar函数的典型用法代码示例。如果您正苦于以下问题:Python bar函数的具体用法?Python bar怎么用?Python bar使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了bar函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: infer_latent_dim
def infer_latent_dim(X, verbose=0, maxr=-1):
"""
r = infer_latent_dim(X, verbose=0)
Infer the latent dimension of an aray assuming data+gaussian noise mixture
Parameters
----------
array X, data whose deimsnionhas to be inferred
verbose=0, int, verbosity level
maxr=-1, int, maximum dimension that can be achieved
if maxr = -1, this is equal to rank(X)
Returns
-------
r, int, the inferred dimension
"""
if maxr ==-1:
maxr = np.minimum(X.shape[0],X.shape[1])
U,S,V = nl.svd(X,0)
if verbose>1:
print "Singular Values", S
L = []
for k in range(maxr):
L.append(_linear_dim_criterion_(S,k,X.shape[1],X.shape[0])/X.shape[0])
L = np.array(L)
rank = np.argmax(L)
if verbose:
import matplotlib.pylab as mp
mp.figure()
mp.bar(np.arange(maxr),L-L.mean())
return rank
示例2: stackedHistogram
def stackedHistogram(data, bins=10, range=None, log = False, normed = False,
filename = None, labels = None,
**formating):
histograms = []
d1 = data[0]
curHist, bins = numpy.histogram(d1, bins = bins, range = range, normed = normed)
histograms.append(curHist)
for d in data[1:]:
curHist, bins = numpy.histogram(d, bins = bins, normed = normed)
histograms.append(curHist)
width = bins[1] - bins[0]
colors = 'b r k g c m y w'.split()
nRepeats = len(data) / len(colors)
for i in xrange(nRepeats):
colors = colors.extend(colors)
for histo, color in zip(histograms, colors):
pylab.bar(bins[:-1], histo[:-1], width = width, log=log,
edgecolor = color, facecolor = None)
doFormating(**formating)
pylab.show()
if filename is not None:
pylab.savefig(filename)
pylab.clf()
示例3: plot_tuning_curves
def plot_tuning_curves(direction_rates, title):
"""
This function takes the x-values and the y-values in units of spikes/s
(found in the two columns of direction_rates) and plots a histogram and
polar representation of the tuning curve. It adds the given title.
"""
x = direction_rates[:,0]
y = direction_rates[:,1]
plt.figure()
plt.subplot(2,2,1)
plt.bar(x,y,width=45,align='center')
plt.xlim(-22.5,337.5)
plt.xticks(x)
plt.xlabel('Direction of Motion (degrees)')
plt.ylabel('Firing Rate (spikes/s)')
plt.title(title)
plt.subplot(2,2,2,polar=True)
r = np.append(y,y[0])
theta = np.deg2rad(np.append(x, x[0]))
plt.polar(theta,r,label='Firing Rate (spikes/s)')
plt.legend(loc=8)
plt.title(title)
示例4: eqDistribution
def eqDistribution(self, plot=True):
""" Obtain and plot the equilibrium probabilities of each macrostate
Parameters
----------
plot : bool, optional, default=True
Disable plotting of the probabilities by setting it to False
Returns
-------
eq : ndarray
An array of equilibrium probabilities of the macrostates
Examples
--------
>>> model = Model(data)
>>> model.markovModel(100, 5)
>>> model.eqDistribution()
"""
self._integrityCheck(postmsm=True)
macroeq = np.ones(self.macronum) * -1
for i in range(self.macronum):
macroeq[i] = np.sum(self.msm.stationary_distribution[self.macro_ofmicro == i])
if plot:
from matplotlib import pylab as plt
plt.ion()
plt.figure()
plt.bar(range(self.macronum), macroeq)
plt.ylabel('Equilibrium probability')
plt.xlabel('Macrostates')
plt.xticks(np.arange(0.4, self.macronum+0.4, 1), range(self.macronum))
plt.show()
return macroeq
示例5: plot_fullstack
def plot_fullstack( binning = np.linspace(0,10,1), myquery='', plotvar = default_plot_variable, \
scalefactor = 1., user_ylim = None):
fig = plt.figure(figsize=(10,6))
plt.grid(True)
lasthist = 0
myhistos = gen_histos(binning=binning,myquery=myquery,plotvar=plotvar,scalefactor=scalefactor)
for key, (hist, bins) in myhistos.iteritems():
plt.bar(bins[:-1],hist,
width=bins[1]-bins[0],
color=colors[key],
bottom = lasthist,
edgecolor = 'k',
label='%s: %d Events'%(labels[key],sum(hist)))
lasthist += hist
plt.title('CCSingleE Stacked Backgrounds',fontsize=25)
plt.ylabel('Events',fontsize=20)
if plotvar == '_e_nuReco' or plotvar == '_e_nuReco_better':
xstring = 'Reconstructed Neutrino Energy [GeV]'
elif plotvar == '_e_CCQE':
xstring = 'CCQE Energy [GeV]'
else:
xstring = plotvar
plt.xlabel(xstring,fontsize=20)
plt.legend()
plt.xticks(list(plt.xticks()[0]) + [binning[0]])
plt.xlim([binning[0],binning[-1]])
示例6: plot_call_rate
def plot_call_rate(c):
# Histogram
P.clf()
P.figure(1)
P.hist(c[:,1], normed=True)
P.xlabel('Call Rate')
P.ylabel('Portion of Variants')
P.savefig(os.environ['OBER'] + '/doc/imputation/cgi/call_rate.png')
####################################################################################
#if __name__ == '__main__':
# # Input parameters
# file_name = sys.argv[1] # Name of data file with MAF, call rates
#
# # Load data
# c = np.loadtxt(file_name, dtype=np.float16)
#
# # Breakdown by call rate (proportional to the #samples, 1415)
# plot_call_rate(c)
# h = np.histogram(c[:,1])
# a = np.flipud(np.cumsum(np.flipud(h[0])))/float(c.shape[0])
# print np.concatenate((h[1][:-1][newaxis].transpose(), a[newaxis].transpose()), axis=1)
# Breakdown by minor allele frequency
maf_n = 20
maf_bins = np.linspace(0, 0.5, maf_n + 1)
maf_bin = np.digitize(c[:,0], maf_bins)
d = c.astype(float64)
mean_call_rate = np.array([(1.*np.mean(d[maf_bin == i,1])) for i in xrange(len(maf_bins))])
P.bar(maf_bins - h, mean_call_rate, width=h)
P.figure(2)
h = (maf_bins[-1] - maf_bins[0]) / maf_n
P.bar(maf_bins - h, mean_call_rate, width=h)
P.savefig(os.environ['OBER'] + '/doc/imputation/cgi/call_rate_maf.png')
示例7: main
def main(argv=None):
if argv is None:
argv = sys.argv
if len(argv) != 4:
print "Usage: " + argv[0] + " <report name> <report dir> <graph dir>"
return 1
report = argv[1]
report_dir = argv[2]
graph_dir = argv[3]
file_list = glob(os.path.join(report_dir, 'part*'))
#Copy the raw data file to the graph_dir
raw_file = os.path.join(graph_dir, report + '.tsv')
shutil.copyfile(file_list[0], raw_file)
#Process the file into a graph, ideally I would combine the two into one but for now I'll stick with two
data_file = csv.DictReader(open(raw_file, 'rb'), fieldnames = ['hour', 'Requests', 'Bytes'], delimiter="\t")
#Make an empty set will all the hours in it os if an hour is not in the data it will be 0
length = 24
requests_dict = {}
for num in range(length):
requests_dict['%0*d' % (2, num)] = (0, 0)
#add the values we have to the dictionaries
for row in data_file:
requests_dict[row['hour']] = (int(row['Requests']), int(row['Bytes']))
#Now get the lists for graphing in the right order
requests = []
num_bytes = []
requests_lists = requests_dict.items()
requests_lists.sort(key=lambda req: req[0])
for req in requests_lists:
requests.append(req[1][0])
num_bytes.append(req[1][1])
fig = pylab.figure(1)
pos = pylab.arange(length) + .5
pylab.bar(pos, requests[:length], aa=True, ecolor='r')
pylab.ylabel('Requests')
pylab.xlabel('Hour')
pylab.title('Request per hour')
pylab.grid(True)
#Save the figure
pylab.savefig(os.path.join(graph_dir, report + '_requests.pdf'), bbox_inches='tight', pad_inches=1)
#bytes listed
fig = pylab.figure(2)
pos = pylab.arange(length) + .5
pylab.bar(pos, num_bytes[:length], aa=True, ecolor='r')
pylab.ylabel('Bytes')
pylab.xlabel('Hour')
pylab.title('Bytes per hour')
pylab.grid(True)
#Save the figure
pylab.savefig(os.path.join(graph_dir, report + '_bytes.pdf'), bbox_inches='tight', pad_inches=1)
示例8: plot_histogram
def plot_histogram(self, main="", numrows=1, numcols=1, fignum=1):
"""Plot a histogram of choices and probability sums. Expects probabilities as (at least) a 2D array.
"""
from matplotlib.pylab import bar, xticks, yticks, title, text, axis, figure, subplot
probabilities = self.get_probabilities()
if probabilities.ndim < 2:
raise StandardError, "probabilities must have at least 2 dimensions."
alts = probabilities.shape[1]
width_par = (1 / alts + 1) / 2.0
choice_counts = self.get_choice_histogram(0, alts)
sum_probs = self.get_probabilities_sum()
subplot(numrows, numcols, fignum)
bar(arange(alts), choice_counts, width=width_par)
bar(arange(alts) + width_par, sum_probs, width=width_par, color="g")
xticks(arange(alts))
title(main)
Axis = axis()
text(
alts + 0.5,
-0.1,
"\nchoices histogram (blue),\nprobabilities sum (green)",
horizontalalignment="right",
verticalalignment="top",
)
示例9: show
def show(self,H):
"""
Display the histogram of the data, together with the mixture model
Parameters
----------
H : ndarray
The histogram of the data.
"""
xmax = np.size(H)
sH = np.sum(H)
nH = H.astype(float)/sH
L = np.zeros(xmax)
ndraw = xmax-1
for i in range(xmax):
L0 = np.exp(self._bcoef(ndraw,i)+i*np.log(self.r0)+ \
(ndraw-i)*np.log(1-self.r0))
L1 = np.exp(self._bcoef(ndraw,i)+i*np.log(self.r1)+ \
(ndraw-i)*np.log(1-self.r1))
L[i] = self.Lambda*L0 + (1-self.Lambda)*L1
L = L/L.sum()
import matplotlib.pylab as mp
mp.figure()
mp.bar(np.arange(xmax),nH)
mp.plot(np.arange(xmax)+0.5,L,'k',linewidth=2)
示例10: Importance_Plot
def Importance_Plot(data,label=None):
'''
:param data: DATAFRAME style
:param label: y vector
:param threshold: jude threshold
:return: figure
'''
import numpy as np
import matplotlib.pylab as plt
from sklearn.ensemble import ExtraTreesClassifier
import pandas as pd
model=ExtraTreesClassifier()
data1=np.array(data)
model.fit(data1,label)
importance=model.feature_importances_
std = np.std([importance for tree in model.estimators_],axis=0)
indices = np.argsort(importance)[::-1]
namedata=data
# Print the feature ranking
print("Feature ranking:")
importa=pd.DataFrame({'importance':list(importance[indices]),'Feature name':list(namedata.columns[indices])})
print importa
# Plot the feature importances of the forest
plt.figure(figsize=(20, 8))
plt.title("Feature importances")
plt.bar(range(data1.shape[1]), importance[indices],
color="g", yerr=std[indices], align="center")
plt.xticks(range(data1.shape[1]), indices)
plt.xlim([-1, data1.shape[1]])
plt.grid(True)
plt.show()
示例11: plot_tuning_curves
def plot_tuning_curves(direction_rates, title):
"""
This function takes the x-values and the y-values in units of spikes/s
(found in the two columns of direction_rates) and plots a histogram and
polar representation of the tuning curve. It adds the given title.
"""
# yank columns and keep in correspondance
directions = direction_rates[0:][:,0]
rates = direction_rates[0:][:,1]
# histogram plot
plt.subplot(2, 2, 1)
plt.title('Histogram ' + title)
plt.axis([0, 360, 0, 70])
plt.xlim(-22.5,337.5)
plt.xlabel('Directions (in degrees)')
plt.ylabel('Average Firing Rate (in spikes/s)')
plt.bar(directions, rates, width=45, align='center')
plt.xticks(directions)
# polar plot
plt.subplot(2,2,2,polar=True)
plt.title('Polar plot ' + title)
#plt.legend('Diring Rate (spikes/s)')
rates = np.append(rates, rates[0])
theta = np.arange(0,361,45)*np.pi/180
plt.polar(theta, rates)
plt.show()
# end plot_tuning_curves
return 0
示例12: plotHousing
def plotHousing(impression):
"""
生成房价随时间变化的图标
"""
f = open("midWestHousingPrices.txt", 'r')
#文件每一行是年季度价格
labels, prices = [], []
for line in f:
year, quarter, price = line.split()
label = year[2:4] + "\n Q" + quarter[1]
labels.append(label)
prices.append(float(price)/1000)
#柱的X坐标
quarters = np.arange(len(labels))
#柱宽
width = 0.5
if impression == 'flat':
plt.semilogy()
plt.bar(quarters, prices, width, color='r')
plt.xticks(quarters + width / 2.0, labels)
plt.title("美国中西部各州房价")
plt.xlabel("季度")
plt.ylabel("平均价格($1000)")
if impression == 'flat':
plt.ylim(10, 10**3)
elif impression == "volatile":
plt.ylim(180, 220)
elif impression == "fair":
plt.ylim(150, 250)
else:
raise ValueError("Invalid input.")
示例13: distributionValues
def distributionValues(y,bins=None):
if bins==None:
bins=int(sqrt(len(y)))
hist,bins=np.histogram(y,bins=bins)
plt.bar(bins[1:],hist,width=bins[1]-bins[0])
示例14: plot_histogram_with_capacity
def plot_histogram_with_capacity(self, capacity, main=""):
"""Plot histogram of choices and capacities. The number of alternatives is determined
from the second dimension of probabilities.
"""
from matplotlib.pylab import bar, xticks, yticks, title, text, axis, figure, subplot
probabilities = self.get_probabilities()
if probabilities.ndim < 2:
raise StandardError, "probabilities must have at least 2 dimensions."
alts = self.probabilities.shape[1]
width_par = (1 / alts + 1) / 2.0
choice_counts = self.get_choice_histogram(0, alts)
sum_probs = self.get_probabilities_sum()
subplot(212)
bar(arange(alts), choice_counts, width=width_par)
bar(arange(alts) + width_par, capacity, width=width_par, color="r")
xticks(arange(alts))
title(main)
Axis = axis()
text(
alts + 0.5,
-0.1,
"\nchoices histogram (blue),\ncapacities (red)",
horizontalalignment="right",
verticalalignment="top",
)
示例15: plotDist
def plotDist(subplot, X, Y, label):
pylab.grid()
pylab.subplot(subplot)
pylab.bar(X, Y, 0.05)
pylab.ylabel(label)
pylab.xticks(arange(len(X)), X)
pylab.yticks(arange(0,1,0.1))