本文整理汇总了Python中matplotlib.pylab.axes函数的典型用法代码示例。如果您正苦于以下问题:Python axes函数的具体用法?Python axes怎么用?Python axes使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了axes函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_fit_gaussian_2d
def test_fit_gaussian_2d(self):
import matplotlib.pylab as plt
# Create the gaussian data
Xin, Yin = plt.mgrid[0:201, 0:201]
data = self._gaussian(3, 100, 100, 20, 40)(Xin, Yin) + \
np.random.random(Xin.shape)
plt.clf()
ax2 = plt.axes([0, 0.52, 1.0, 0.4])
ax2.matshow(data, cmap=plt.cm.gist_earth_r)
params = ap.fitGaussianImage(data)
fit = self._gaussian(*params)
ax2.contour(fit(*np.indices(data.shape)), cmap=plt.cm.cool)
(height, x, y, width_x, width_y) = params
plt.text(0.95, 0.05, """
x : %.1f
y : %.1f
width_x : %.1f
width_y : %.1f""" %(x, y, width_x, width_y),
fontsize=16, horizontalalignment='right',
verticalalignment='bottom', transform=ax2.transAxes)
ax1 = plt.axes([0, 0.08, 1.0, 0.4])
示例2: propagate_el_den_TB
def propagate_el_den_TB(Nx=50, Ny=40, mu=0.05, frame_num=100):
ham = envtb.ldos.hamiltonian.HamiltonianTB(Ny, Nx)
wf_final = wf_init_from_electron_density(ham, mu = mu)
maxel = 1.2 * np.max(wf_final.wf1d)
wf_final.plot_wave_function(maxel)
plt.axes().set_aspect('equal')
plt.savefig('../../../../Desktop/pics_2d/TB/0%d_2d.png' % 0)
plt.close()
for i in xrange(frame_num):
potential = envtb.ldos.potential.Potential1DFromFunction(
lambda x: -5. * (Ny/2 - x) * 2. / Ny * np.sin(0.1 * i))
ham2 = ham.apply_potential(potential)
envtb.ldos.plotter.Plotter().plot_potential(
ham2, ham, maxel = 5, minel = -5)
plt.axes().set_aspect('equal')
plt.savefig('../../../../Desktop/pics_2d/TB/pot%03d_2d.png' % i)
plt.close()
wf_init = wf_final
wf_final = propagate_wave_function(wf_init, ham2, maxel = maxel,
file_out = '../../../../Desktop/pics_2d/TB/f%03d_2d.png' % i)
return None
示例3: display_grid
def display_grid(grid, **kwargs):
fig = plt.figure()
plt.axes().set_aspect('equal')
if kwargs.get('mark_core_cells', True):
core_cell_coords = grid._cell_nodes[1:-1, 1:-1]
cellx, celly = core_cell_coords[:, :, 0], core_cell_coords[:, :, 1]
plt.plot(cellx, celly, '-o', np.transpose(cellx), np.transpose(celly), '-o', color='red')
if kwargs.get('mark_boundary_cells', True):
boundary_cell_coords = grid._cell_nodes[0, :], \
grid._cell_nodes[-1, :], \
grid._cell_nodes[1:-1, 0], \
grid._cell_nodes[1:-1, -1]
for coords in boundary_cell_coords:
plt.plot(coords[:, 0], coords[:, 1], '-x', color='blue')
if kwargs.get('show', False):
plt.show()
f = BytesIO()
plt.savefig(f)
return f
示例4: propagate_gauss_graphene
def propagate_gauss_graphene(Nx=30, Ny=30, frame_num=100):
ham = envtb.ldos.hamiltonian.HamiltonianGraphene(Ny, Nx)
ic = Nx/2 * Ny + Ny/2 + 2
wf_final = wf_init_gaussian_wave_packet(
ham.coords, ic, p0=[1.0, 0.0], sigma=7.)
maxel = 0.8 * np.max(wf_final.wf1d)
wf_final.plot_wave_function(maxel)
plt.axes().set_aspect('equal')
plt.savefig('../../../../Desktop/pics_2d/graphene/0%d_2d.png' % 0)
plt.close()
dt_new = 0.5
NK_new = 12
for i in xrange(frame_num):
print 'frame %(i)d' % vars()
wf_init = wf_final
wf_final, dt_new, NK_new = propagate_wave_function(
wf_init, ham, NK=NK_new, dt=dt_new, maxel = maxel, regime='SIL',
file_out = '../../../../Desktop/pics_2d/graphene/f%03d_2d.png'
% i)
return None
示例5: plot
def plot(frame,dirname,clim=None,axis_limits=None):
if not os.path.exists('./figures'):
os.makedirs('./figures')
try:
sol=Solution(frame,file_format='petsc',read_aux=False,path='./saved_data/'+dirname+'/_p/',file_prefix='claw_p')
except IOError:
'Data file not found; please unzip the files in saved_data/.'
return
x=sol.state.grid.x.centers; y=sol.state.grid.y.centers
mx=len(x); my=len(y)
mp=sol.state.num_eqn
yy,xx = np.meshgrid(y,x)
p=sol.state.q[0,:,:]
if clim is not None:
pl.pcolormesh(xx,yy,p,cmap=cm.RdBu_r)
else:
pl.pcolormesh(xx,yy,p,cmap=cm.Reds)
pl.title("t= "+str(sol.state.t),fontsize=20)
pl.xticks(size=20); pl.yticks(size=20)
cb = pl.colorbar();
if clim is not None:
pl.clim(clim[0],clim[1]);
imaxes = pl.gca(); pl.axes(cb.ax)
pl.yticks(fontsize=20); pl.axes(imaxes)
pl.axis('equal')
if axis_limits is None:
pl.axis([np.min(x),np.max(x),np.min(y),np.max(y)])
else:
pl.axis([axis_limits[0],axis_limits[1],axis_limits[2],axis_limits[3]])
pl.savefig('./figures/'+dirname+'.png')
pl.close()
示例6: plot_p_leading_order
def plot_p_leading_order(frame):
mat = scipy.io.loadmat('sound-speed_2D-wave.mat')
T=5; nt=T/0.5
pp=mat['U'][nt,:,:]
xx=mat['xx']
yy=mat['yy']
fig=pl.figure(figsize=(8, 3.5))
#pl.title("t= "+str(sol.state.t),fontsize=20)
pl.xticks(size=20); pl.yticks(size=20)
pl.xlabel('x',fontsize=20); pl.ylabel('y',fontsize=20)
#pl.pcolormesh(xx,yy,p_subxy,cmap=cm.OrRd)
pl.pcolormesh(xx,yy,pp,cmap='RdBu_r')
pl.autoscale(tight=True)
cb = pl.colorbar(ticks=[0.5,1,1.5,2]);
#pl.clim(ticks=[0.5,1,1.5,2])
imaxes = pl.gca(); pl.axes(cb.ax)
pl.yticks(fontsize=20); pl.axes(imaxes)
#pl.xticks(fontsize=20); pl.axes(imaxes)
#pl.axis('equal')
pl.axis('tight')
fig.tight_layout()
pl.savefig('./_plots_to_paper/sound-speed_LO_t'+str(frame)+'_pcolor.png')
pl.close()
示例7: propagate_gauss_graphene_W90
def propagate_gauss_graphene_W90(Nx=30, Ny=20, magnetic_B=None,
frame_num=100):
ham_w90 = define_zigzag_ribbon_w90(
"../../exampledata/02_graphene_3rdnn/graphene3rdnnlist.dat",
Ny, Nx, magnetic_B=magnetic_B)
ham = envtb.ldos.hamiltonian.HamiltonianFromW90(ham_w90, Nx)
ic = ham.Nx/2 * ham.Ny + ham.Ny/2 + 2
wf_final = wf_init_gaussian_wave_packet(ham.coords, ic, sigma = 10.)
maxel = 0.8 * np.max(wf_final.wf1d)
wf_final.plot_wave_function(maxel)
plt.axes().set_aspect('equal')
plt.savefig('../../../../Desktop/pics_2d/grapheneW90/0%d_2d.png' % 0)
plt.close()
for i in xrange(frame_num):
wf_init = wf_final
wf_final = propagate_wave_function(wf_init, ham, maxel=maxel,
file_out='../../../../Desktop/pics_2d/grapheneW90/f%03d_2d.png' % i)[0]
return None
示例8: plotLFP
def plotLFP ():
print('Plotting LFP power spectral density...')
colorspsd=array([[0.42,0.67,0.84],[0.42,0.83,0.59],[0.90,0.76,0.00],[0.90,0.32,0.00],[0.34,0.67,0.67],[0.42,0.82,0.83],[0.90,0.59,0.00],[0.33,0.67,0.47],[1.00,0.85,0.00],[0.71,0.82,0.41],[0.57,0.67,0.33],[1.00,0.38,0.60],[0.5,0.2,0.0],[0.0,0.2,0.5]])
lfpv=[[] for c in range(len(sim.lfppops))]
# Get last modified .mat file if no input and plot
for c in range(len(sim.lfppops)):
lfpv[c] = sim.lfps[:,c]
lfptot = sum(lfpv)
# plot pops separately
plotPops = 0
if plotPops:
figure() # Open a new figure
for p in range(len(sim.lfppops)):
psd(lfpv[p],Fs=200, linewidth= 2,color=colorspsd[p])
xlabel('Frequency (Hz)')
ylabel('Power')
h=axes()
h.set_yticklabels([])
legend(['L2/3','L5A', 'L5B', 'L6'])
# plot overall psd
figure() # Open a new figure
psd(lfptot,Fs=200, linewidth= 2)
xlabel('Frequency (Hz)')
ylabel('Power')
h=axes()
h.set_yticklabels([])
show()
示例9: plot_decision_surface
def plot_decision_surface(axes, clusters, X, Y=None):
import matplotlib.pylab as pylab
import numpy as np
def kmeans_predict(clusters, X):
from ..core import distance
dist_m = distance.minkowski_dist(clusters, X)
print 'dist_m:', dist_m.shape
pred = np.argmin(dist_m, axis=0)
print 'pred:', pred.shape
return pred
# step size in the mesh
h = (np.max(X, axis=0) - np.min(X, axis=0)) / 100.0
# create a mesh to plot in
x_min = np.min(X, axis=0) - 1
x_max = np.max(X, axis=0) + 1
xx, yy = np.meshgrid(np.arange(x_min[0], x_max[0], h[0]),
np.arange(x_min[1], x_max[1], h[1]))
Z = kmeans_predict(clusters, np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
pylab.set_cmap(pylab.cm.Paired)
pylab.axes(axes)
pylab.contourf(xx, yy, Z, cmap=pylab.cm.Paired)
pylab.xlim(np.min(xx), np.max(xx))
pylab.ylim(np.min(yy), np.max(yy))
#pylab.axis('off')
# Plot also the training points
if Y is not None:
pylab.scatter(X[:,0], X[:,1], c=Y)
else:
pylab.scatter(X[:,0], X[:,1])
pylab.scatter(clusters[:,0], clusters[:,1], s=200, marker='x', color='white')
示例10: _stacking
def _stacking(self, star_list, x_list, y_list):
"""
:param star_list:
:return:
"""
n_stars = len(star_list)
shifteds = []
for i in range(n_stars):
xc, yc = x_list[i], y_list[i]
data = star_list[i]
x_shift = int(xc) - xc
y_shift = int(yc) - yc
shifted = interp.shift(data, [-y_shift, -x_shift], order=1)
shifteds.append(shifted)
print('=== object ===', i)
import matplotlib.pylab as plt
fig, ax1 = plt.subplots()
im = ax1.matshow(np.log10(shifted), origin='lower')
plt.axes(ax1)
fig.colorbar(im)
plt.show()
combined = sum(shifteds)
new=np.empty_like(combined)
max_pix = np.max(combined)
p = combined[combined>=max_pix/10**6] #in the SIS regime
new[combined < max_pix/10**6] = 0
new[combined >= max_pix/10**6] = p
kernel = util.kernel_norm(new)
return kernel
示例11: __init__
def __init__(self, ax, collection, mmc, img):
self.colornormalizer = Normalize(vmin=0, vmax=1, clip=False)
self.scat = plt.scatter(img[:, 0], img[:, 1], c=mmc.classvec)
plt.gray()
plt.setp(ax.get_yticklabels(), visible=False)
ax.yaxis.set_tick_params(size=0)
plt.setp(ax.get_xticklabels(), visible=False)
ax.xaxis.set_tick_params(size=0)
self.img = img
self.canvas = ax.figure.canvas
self.collection = collection
#self.alpha_other = alpha_other
self.mmc = mmc
self.prevnewclazz = None
self.xys = collection
self.Npts = len(self.xys)
self.lockedset = set([])
self.lasso = LassoSelector(ax, onselect=self.onselect)#, lineprops = {:'prism'})
self.lasso.disconnect_events()
self.lasso.connect_event('button_press_event', self.lasso.onpress)
self.lasso.connect_event('button_release_event', self.onrelease)
self.lasso.connect_event('motion_notify_event', self.lasso.onmove)
self.lasso.connect_event('draw_event', self.lasso.update_background)
self.lasso.connect_event('key_press_event', self.onkeypressed)
#self.lasso.connect_event('button_release_event', self.onrelease)
self.ind = []
self.slider_axis = plt.axes(slider_coords, visible = False)
self.slider_axis2 = plt.axes(obj_fun_display_coords, visible = False)
self.in_selection_slider = None
newws = list(set(range(len(self.collection))) - self.lockedset)
self.mmc.new_working_set(newws)
self.lasso.line.set_visible(False)
示例12: plot_fig
def plot_fig(data):
nullfmt = NullFormatter()
x, y = data[:, 0], data[:, 1]
left, width = 0.1, 0.65
bottom, height = 0.1, 0.65
bottom_h = left_h = left + width + 0.02
rect_scatter = [left, bottom, width, height]
rect_histx = [left, bottom_h, width, 0.2]
rect_histy = [left_h, bottom, 0.2, height]
plt.figure(1, figsize=(8, 8))
axScatter = plt.axes(rect_scatter)
plt.xlabel("eruptions")
plt.ylabel("waiting")
axHistx = plt.axes(rect_histx)
axHisty = plt.axes(rect_histy)
axHistx.xaxis.set_major_formatter(nullfmt)
axHisty.yaxis.set_major_formatter(nullfmt)
axScatter.scatter(x, y)
# now determine nice limits by hand:
axHistx.hist(x, bins=20)
axHisty.hist(y, bins=20, orientation="horizontal")
plt.savefig("Scatter_Plot.png")
plt.show()
示例13: plot_p
def plot_p(frame):
sol=Solution(frame,file_format='petsc',read_aux=False,path='./_output/_p/',file_prefix='claw_p')
x=sol.state.grid.x.centers; y=sol.state.grid.y.centers
mx=len(x); my=len(y)
mp=sol.state.num_eqn
yy,xx = np.meshgrid(y,x)
p=sol.state.q[0,:,:]
fig = pl.figure(figsize=(8, 3.5))
#pl.title("t= "+str(sol.state.t),fontsize=20)
pl.xticks(size=20); pl.yticks(size=20)
pl.xlabel('x',fontsize=20); pl.ylabel('y',fontsize=20)
#pl.pcolormesh(xx,yy,p_subxy,cmap=cm.OrRd)
pl.pcolormesh(xx,yy,p,cmap='RdBu_r')
pl.autoscale(tight=True)
cb = pl.colorbar(ticks=[0.5,1,1.5,2]);
#pl.clim(ticks=[0.5,1,1.5,2])
imaxes = pl.gca(); pl.axes(cb.ax)
pl.yticks(fontsize=20); pl.axes(imaxes)
#pl.xticks(fontsize=20); pl.axes(imaxes)
#pl.axis('equal')
pl.axis('tight')
fig.tight_layout()
pl.savefig('./_plots_to_paper/sound-speed_FV_t'+str(frame)+'_pcolor.png')
pl.close()
示例14: plot
def plot(self, data, topn):
""" Plot data fit and residuals """
from matplotlib import pylab as pl
pl.axes([0.1, 0.4, 0.8, 0.4]) # leave room above the axes for the table
self.fit_plot(data, topn=topn)
pl.axes([0.1, 0.05, 0.8, 0.3])
self.residual_plot(data, topn=topn)
示例15: plot_scatter
def plot_scatter(x,y,show=1,nbins=100,xrange=None,yrange=None,title="",xtitle="",ytitle=""):
from matplotlib.ticker import NullFormatter
# the random data
nullfmt = NullFormatter() # no labels
# definitions for the axes
left, width = 0.1, 0.65
bottom, height = 0.1, 0.65
bottom_h = left_h = left+width+0.02
rect_scatter = [left, bottom, width, height]
rect_histx = [left, bottom_h, width, 0.2]
rect_histy = [left_h, bottom, 0.2, height]
# start with a rectangular Figure
fig = plt.figure(figsize=(8,8))
axScatter = plt.axes(rect_scatter)
axHistx = plt.axes(rect_histx)
axHisty = plt.axes(rect_histy)
# no labels
axHistx.xaxis.set_major_formatter(nullfmt)
axHisty.yaxis.set_major_formatter(nullfmt)
# now determine nice limits by hand:
binwidth = np.array([x.max() - x.min(), y.max() - y.min()]).max() / nbins
if xrange == None:
xrange = np.array((x.min(), x.max()))
if yrange == None:
yrange = np.array((y.min(), y.max()))
# the scatter plot:
axScatter.scatter(x, y, marker='.', edgecolor='b', s=.1)
axScatter.set_xlabel(xtitle)
axScatter.set_ylabel(ytitle)
axScatter.set_xlim( xrange )
axScatter.set_ylim( yrange )
bins_x = np.arange(xrange[0], xrange[1] + binwidth, binwidth)
axHistx.hist(x, bins=nbins)
axHisty.hist(y, bins=nbins, orientation='horizontal')
axHistx.set_xlim( axScatter.get_xlim() )
axHistx.set_title(title)
axHisty.set_ylim( axScatter.get_ylim() )
if show: plt.show()
return fig