本文整理汇总了Python中matplotlib.patches.Ellipse.set_zorder方法的典型用法代码示例。如果您正苦于以下问题:Python Ellipse.set_zorder方法的具体用法?Python Ellipse.set_zorder怎么用?Python Ellipse.set_zorder使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.patches.Ellipse
的用法示例。
在下文中一共展示了Ellipse.set_zorder方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: rectSelection
# 需要导入模块: from matplotlib.patches import Ellipse [as 别名]
# 或者: from matplotlib.patches.Ellipse import set_zorder [as 别名]
class rectSelection(GuiSelection):
"""Interactive selection of a rectangular region on the axis.
Used by hist2d_alex().
"""
def on_press_draw(self):
if 'r' in self.__dict__:
self.r.set_height(0)
self.r.set_width(0)
self.r.set_xy((self.xs, self.ys))
self.e.height = 0
self.e.width = 0
self.e.center = (self.xs, self.ys)
else:
self.r = Rectangle(xy=(self.xs, self.ys), height=0, width=0,
fill=False, lw=2, alpha=0.5, color='blue')
self.e = Ellipse(xy=(self.xs, self.ys), height=0, width=0,
fill=False, lw=2, alpha=0.6, color='blue')
self.ax.add_artist(self.r)
self.ax.add_artist(self.e)
self.r.set_clip_box(self.ax.bbox)
self.r.set_zorder(10)
self.e.set_clip_box(self.ax.bbox)
self.e.set_zorder(10)
def on_motion_draw(self):
self.r.set_height(self.ye - self.ys)
self.r.set_width(self.xe - self.xs)
self.e.height = (self.ye - self.ys)
self.e.width = (self.xe - self.xs)
self.e.center = (np.mean([self.xs, self.xe]),
np.mean([self.ys, self.ye]))
self.fig.canvas.draw()
def on_release_print(self):
# This is the only custom method for hist2d_alex()
E1, E2 = min((self.xs, self.xe)), max((self.xs, self.xe))
S1, S2 = min((self.ys, self.ye)), max((self.ys, self.ye))
self.selection = dict(E1=E1, E2=E2, S1=S1, S2=S2)
pprint("Selection: \nE1=%.2f, E2=%.2f, S1=%.2f, S2=%.2f\n" %\
(E1,E2,S1,S2))
示例2: make_newartist
# 需要导入模块: from matplotlib.patches import Ellipse [as 别名]
# 或者: from matplotlib.patches.Ellipse import set_zorder [as 别名]
def make_newartist(self):
self.check_loaded_gp_data()
x1, y1=self.get_gp(0).get_device_point()
x2, y2=self.get_gp(1).get_device_point()
xy = ((x1+x2)/2, (y1+y2)/2)
w = abs(x1-x2)
h = abs(y1-y2)
if self.getp("isotropic"):
if w>h: w=h
else: h = w
a = Ellipse(xy, w, h, angle = self.getp('angle'),
facecolor='none', fill=False,
edgecolor='black', alpha=1)
lp=self.getp("loaded_property")
if lp is not None:
self.set_artist_property(a, lp[0])
self.delp("loaded_property")
a.figobj=self
a.figobj_hl=[]
a.set_zorder(self.getp('zorder'))
return a
示例3: MplCircularROI
# 需要导入模块: from matplotlib.patches import Ellipse [as 别名]
# 或者: from matplotlib.patches.Ellipse import set_zorder [as 别名]
class MplCircularROI(AbstractMplRoi):
"""
Class to display / edit circular ROIs using matplotlib
Since circles on the screen may not be circles in the data
(due, e.g., to logarithmic scalings on the axes), the
ultimate ROI that is created is a polygonal ROI
:param plot_opts:
A dictionary of plot keywords that are passed to
the patch representing the ROI. These control
the visual properties of the ROI
"""
def __init__(self, axes):
"""
:param axes: A matplotlib Axes object to attach the graphical ROI to
"""
AbstractMplRoi.__init__(self, axes)
self.plot_opts = {'edgecolor': PATCH_COLOR, 'facecolor': PATCH_COLOR,
'alpha': 0.3}
self._xi = None
self._yi = None
self._setup_patch()
def _setup_patch(self):
self._patch = Ellipse((0., 0.), transform=IdentityTransform(),
width=0., height=0.,)
self._patch.set_zorder(100)
self._patch.set(**self.plot_opts)
self._axes.add_patch(self._patch)
self._patch.set_visible(False)
self._sync_patch()
def _roi_factory(self):
return CircularROI()
def _sync_patch(self):
# Update geometry
if not self._roi.defined():
self._patch.set_visible(False)
else:
xy = self._roi.get_center()
r = self._roi.get_radius()
self._patch.center = xy
self._patch.width = 2. * r
self._patch.height = 2. * r
self._patch.set_visible(True)
# Update appearance
self._patch.set(**self.plot_opts)
# Refresh
self._axes.figure.canvas.draw()
def start_selection(self, event):
if event.inaxes != self._axes:
return False
xy = data_to_pixel(self._axes, [event.xdata], [event.ydata])
xi = xy[0, 0]
yi = xy[0, 1]
if event.key == SCRUBBING_KEY:
if not self._roi.defined():
return False
elif not self._roi.contains(xi, yi):
return False
self._roi_store()
if event.key == SCRUBBING_KEY:
self._scrubbing = True
(xc, yc) = self._roi.get_center()
self._dx = xc - xi
self._dy = yc - yi
else:
self.reset()
self._roi.set_center(xi, yi)
self._roi.set_radius(0.)
self._xi = xi
self._yi = yi
self._mid_selection = True
self._sync_patch()
def update_selection(self, event):
if not self._mid_selection or event.inaxes != self._axes:
return False
xy = data_to_pixel(self._axes, [event.xdata], [event.ydata])
xi = xy[0, 0]
yi = xy[0, 1]
#.........这里部分代码省略.........
示例4: __call__
# 需要导入模块: from matplotlib.patches import Ellipse [as 别名]
# 或者: from matplotlib.patches.Ellipse import set_zorder [as 别名]
def __call__(self, inferrer, f_, curve_xs_, true_ys_, scatter_xs_, scatter_ys_, circles_, user_prefix_):
# Some of this is hackish
aux = [map(getNumber, p.getArray()) for p in fromStackDict(f_[0]["aux"]).getArray()]
f = f_[0]["value"]
prior_mean = f.mean
prior_cov = f.covariance
if len(aux) > 0:
Xseen, Yseen = zip(*aux)
else:
Xseen, Yseen = [], []
curve_xs = map(getNumber, fromStackDict(curve_xs_[0]).getArray())
true_ys = map(getNumber, fromStackDict(true_ys_[0]).getArray())
user_prefix = fromStackDict(user_prefix_[0]).getString()
scatter_xs = map(getNumber, fromStackDict(scatter_xs_[0]).getArray())
scatter_ys = map(getNumber, fromStackDict(scatter_ys_[0]).getArray())
circles = map(lambda a: map(getNumber, a), map(getArray, fromStackDict(circles_[0]).getArray()))
mean, cov = gp_conditional.conditional_mean_and_cov(curve_xs, prior_mean, prior_cov, Xseen, Yseen)
fig, ax = plt.subplots(1)
ax.set_xlabel("a")
ax.set_ylabel("r(a)").set_rotation(0)
ax.scatter(scatter_xs, scatter_ys, color="k", s=15)
ax.set_xlim(min(curve_xs), max(curve_xs))
for i in range(100):
ys = np.random.multivariate_normal(mean, cov)
ax.plot(curve_xs, ys, c="red", alpha=0.2, linewidth=2)
if len(true_ys) > 0:
ax.plot(curve_xs, true_ys, c="blue")
for ccoords in circles:
(x, y) = ccoords[0:2]
def to_hex_color(n):
h = hex(int(n))[2:]
padded = (6 - len(h)) * "0" + h
return clr.hex2color("#" + padded)
color = to_hex_color(ccoords[2]) if len(ccoords) > 2 else "green"
xsize, ysize = ccoords[3:5] if len(ccoords) > 3 else (0.4, 0.33)
circle = Ellipse([x, y], xsize, ysize, color=color, linewidth=5, fill=False)
circle.set_zorder(10)
ax.add_artist(circle)
date_fmt = "%Y%m%d_%H%M%S"
directory = "draw_gp_curves_callback"
def j(fname):
return os.path.join(directory, fname)
output_prefix = "%s_%s" % (user_prefix, datetime.now().strftime(date_fmt))
scatterpath = j("%s_scatter.pkl" % (output_prefix,))
print "Logging scatter data to %s" % (scatterpath,)
scatter_data = {"scatter_xs": scatter_xs, "scatter_ys": scatter_ys}
with open(scatterpath, "wb") as f:
pickle.dump(scatter_data, f)
print "Outputting to %s.png" % (j(output_prefix),)
fig.savefig("%s.png" % (j(output_prefix),), dpi=fig.dpi, bbox_inches="tight")
print "Done."
示例5: plotDensityMatricesContour
# 需要导入模块: from matplotlib.patches import Ellipse [as 别名]
# 或者: from matplotlib.patches.Ellipse import set_zorder [as 别名]
def plotDensityMatricesContour(densityMatrices,figureName = None,export=None,figureTitle = None,annotate = True,labels = [],show = "all"):
from numpy import angle
from pyview.ide.mpl.backend_agg import figure
if figureName != None:
fig = figure(figureName)
from matplotlib.patches import Ellipse
import matplotlib.cm
NUM = 250
#cmap = get_cmap('jet')
sat = 0.8
cdict = {'blue': ((0.0, sat, sat),(0.5, 1-sat, 1-sat),(1.0, sat, sat)),'green': ((0.0, 0,0),(0.5, 0,0),(1.0, 0,0)),'red': ((0.0, 1-sat, 1-sat),(0.5,sat,sat),(1,1-sat,1-sat))}
my_cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap',cdict,256)
cmap = my_cmap
if figureName != None:
clf()
cla()
if figureTitle != None:
title(figureTitle)
n = densityMatrices[0].shape[0]
ax = gca()
ax.set_aspect('equal')
styles = ["solid","solid"]
widths = [0.5,1]
colors = ["black",'red',"blue","magenta","green"]
for i in range(0,n):
if show == "lowerTriangular":
ax.add_artist(Line2D([-1,n-i-0.5],[0.5+i,0.5+i],ls = '--',color = 'grey'))
ax.add_artist(Line2D([0.5+i,0.5+i],[-1,n-i-0.5],ls = '--',color = 'grey'))
elif show == "upperTriangular":
ax.add_artist(Line2D([-1,n],[0.5+i,0.5+i],ls = '--',color = 'grey'))
ax.add_artist(Line2D([0.5+i,0.5+i],[-1,n],ls = '--',color = 'grey'))
else:
ax.add_artist(Line2D([-1,n],[0.5+i,0.5+i],ls = '--',color = 'grey'))
ax.add_artist(Line2D([0.5+i,0.5+i],[-1,n],ls = '--',color = 'grey'))
for j in range(0,n):
if show == "lowerTriangular":
if j > n-i:
continue
elif show == "upperTriangular":
if j < i:
continue
if i == n-j-1:
rect = Rectangle(xy = [i-0.5,j-0.5],width = 1.0,height = 1.0)
rect.set_facecolor([0.9,0.9,0.9])
ax.add_artist(rect)
plotted = False
k = 0
for densityMatrix in densityMatrices:
v = abs(densityMatrix[n-j-1,i])
r = sqrt(v)*0.9
phi = angle(densityMatrix[n-j-1,i])
e = Ellipse(xy=(i,j), width=r, height=r, angle=0,ls = styles[k%len(styles)],lw = widths[k%len(widths)])
fc = cmap((phi+math.pi)/2.0/math.pi)
t = Text(x = i+0.5-0.04,va = 'top',ha = 'right',y = j+0.5-0.04,text = "%.2f" % v,size = 'medium' )
a = Arrow(x = i-0.45*r*cos(phi)*0,y = j-0.45*r*sin(phi)*0,dx = r*cos(phi)*0.5,dy = r*sin(phi)*0.5,zorder = 10,width = 0.1,fc = colors[k%len(colors)],lw = 0)
e.set_clip_box(ax.bbox)
e.set_alpha(1.0)
e.set_facecolor('none')
e.set_edgecolor(colors[k%len(colors)])
if v > 0.01:
ax.add_artist(a)
ax.add_artist(e)
plotted = True
k+=1
if plotted:
e2 = Ellipse(xy=(i,j), width=0.025, height=0.025, angle=0)
e2.set_facecolor('black')
e2.set_zorder(n*n*10)
ax.add_artist(e2)
if annotate and labels != []:
yticks(arange(n-1,-1,-1),labels,rotation = -45)
xticks(arange(0,n,1),labels,rotation = -45)
else:
yticks([0,1,2,3],["","","",""])
xticks([0,1,2,3],["","","",""])
#.........这里部分代码省略.........