本文整理汇总了Python中matplotlib.mlab.normpdf函数的典型用法代码示例。如果您正苦于以下问题:Python normpdf函数的具体用法?Python normpdf怎么用?Python normpdf使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了normpdf函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: grafix1
def grafix1(VP,VPp,m,x,y,c):
error = []
for i in range(len(VP)):
error.append(abs(VP[i]-VPp[i]))
bins_s=60
bins_vp = np.linspace(min(VP), max(VP), bins_s)
scatterP= m+' \n $r=$'+str(round(np.corrcoef(VP,VPp)[0,1],2))
label_hist_pl = '\n '+x+'\n $\overline{e} =$'+str(round(np.mean(error))) \
+'\n $\sigma_e =$'+str(round(np.std(error)))
#--------------------------------------------------------------------------------------------------#
X_VP = np.linspace(min(VP), max(VP),bins_s)
dx_VP = np.histogram(VP ,bins=bins_vp)[1][1] - np.histogram(VP ,bins=bins_vp)[1][0]
Y_VP = mlab.normpdf(np.linspace(min(VP),max(VP),bins_s),np.mean(VP),np.sqrt(np.var(VP)))*len(VP)*dx_VP
#-----------------------------------------------------------------------------------------------------#
X_VPp = np.linspace(min(VPp), max(VPp),bins_s)
dx_VPp = np.histogram(VPp ,bins=bins_vp)[1][1] - np.histogram(VPp ,bins=bins_vp)[1][0]
Y_VPp = mlab.normpdf(np.linspace(min(VPp),max(VPp),bins_s),np.mean(VPp),np.sqrt(np.var(VPp)))*len(VPp)*dx_VPp
#-----------------------------------------------------------------------------------------------------#
fig = plt.figure(figsize= (12,12))
ax1 = plt.subplot(222)
ax1.hist(VP,bins_vp,histtype='bar',stacked=True,color='k',alpha=0.5,label='Valores $VP$')
ax1.plot(X_VP,Y_VP,linewidth=2,color='k')
ax1.hist(VPp , bins_vp, histtype='bar', stacked=True, color=c, alpha=0.3,label=label_hist_pl)
ax1.plot(X_VPp,Y_VPp,linewidth = 2, color=c)
plt.xlabel('Velocidades $(m / s)$');plt.ylabel('Distribuição');plt.grid();plt.xlim(xmax=max(VP),xmin=min(VP));
plt.ylim(ymax=180,ymin=0);legend = ax1.legend(loc=1, shadow=True)
ax2=plt.subplot(221);ax2.plot(VP,VP,'+k');ax2.plot(VP,VPp,'+'+c,label=scatterP);legend=ax2.legend(loc=4)
plt.xlim(xmax=max(VP),xmin=min(VP));plt.ylim(ymax=max(VP),ymin=min(VP));
plt.xlabel('Velocidade Original $VP$ em $m/s$')
plt.ylabel('Velocidade Estimada '+x+' em $m/s$');plt.grid()
plt.show()
示例2: classify_2d
def classify_2d(data_a, data_b, x):
x1 = x[0]
x2 = x[1]
probability_a = data_a.shape[1] / (data_a.shape[1] + data_b.shape[1])
probability_b = data_b.shape[1] / (data_a.shape[1] + data_b.shape[1])
mean_x1_a = np.mean(data_a[0,:])
mean_x2_a = np.mean(data_a[1,:])
mean_x1_b = np.mean(data_b[0,:])
mean_x2_b = np.mean(data_b[1,:])
variance_x1_a = np.var(data_a[0,:])
variance_x2_a = np.var(data_a[1,:])
variance_x1_b = np.var(data_b[0,:])
variance_x2_b = np.var(data_b[1,:])
pd_x1_given_a = mlab.normpdf(x1, mean_x1_a, variance_x1_a)
pd_x2_given_a = mlab.normpdf(x2, mean_x2_a, variance_x2_a)
pd_x1_given_b = mlab.normpdf(x1, mean_x1_b, variance_x1_b)
pd_x2_given_b = mlab.normpdf(x2, mean_x2_b, variance_x2_b)
posterior_numerator_a = probability_a * pd_x1_given_a * pd_x2_given_a
posterior_numerator_b = probability_b * pd_x1_given_b * pd_x2_given_b
posterior_numerators = { 'A': posterior_numerator_a, 'B': posterior_numerator_b }
return max(posterior_numerators.iterkeys(), key=(lambda k: posterior_numerators[k]))
示例3: main
def main():
x1 = 0.0
N = 5000
x1Values = np.zeros(N)
x2Values = np.zeros(N)
for i in range(N):
x2 = updateX2(x1)
x2Values[i] = x2
x1 = updateX1(x2)
x1Values[i] = x1
#plot
plt.hist(x1Values, bins=20, alpha=0.6, label='calc. marginal', normed=True)
x = np.linspace(-3,5)
plt.plot(x,mlab.normpdf(x,1.0,1.0), lw=3)
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.legend(loc='upper right')
plt.savefig('px1')
plt.clf()
plt.hist(x2Values, bins=20, alpha=0.6, label='calc. marginal', normed=True)
x = np.linspace(-3,5)
plt.plot(x,mlab.normpdf(x,1.0,1.0), lw=3)
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.legend(loc='upper right')
plt.savefig('px2')
示例4: plot_score_distributions
def plot_score_distributions(threshold, neg_devel, pos_devel, neg_test, pos_test, filename='score_dist.png'):
plt.clf()
plt.figure(1)
plt.subplot(211)
plt.title("Score distributions (Deve set)")
n, bins, patches = plt.hist(neg_devel, bins=25, normed=1, histtype='bar', label='Negative class')
na, bins_a, patches_a = plt.hist(pos_devel, bins=25, normed=1, histtype='bar', label='Positive class')
# add a line showing the expected distribution
y = mlab.normpdf(bins, np.mean(neg_devel), np.std(neg_devel))
plt.plot(bins, y, 'k--', linewidth=1.5)
y = mlab.normpdf(bins_a, np.mean(pos_devel), np.std(pos_devel))
plt.plot(bins_a, y, 'k--', linewidth=1.5)
plt.axvline(x=threshold, linewidth=2, color='blue')
plt.legend()
plt.subplot(212)
plt.title("Score distributions (Test set)")
n, bins, patches = plt.hist(neg_test, bins=25, normed=1, facecolor='green', alpha=0.5, histtype='bar',
label='Negative class')
na, bins_a, patches_a = plt.hist(pos_test, bins=25, normed=1, facecolor='red', alpha=0.5, histtype='bar',
label='Positive class')
# add a line showing the expected distribution
y = mlab.normpdf(bins, np.mean(neg_test), np.std(neg_test))
plt.plot(bins, y, 'k--', linewidth=1.5)
y = mlab.normpdf(bins_a, np.mean(pos_test), np.std(pos_test))
plt.plot(bins_a, y, 'k--', linewidth=1.5)
plt.axvline(x=threshold, linewidth=2, color='blue')
plt.legend()
current_dir = os.getcwd()
output = '{0}/{1}.png'.format(current_dir, filename)
plt.savefig(output)
示例5: naive_bayes
def naive_bayes(w1train,w2train,test):
# prior
n = w1train.shape[0]+w2train.shape[0]
w_1 = w1train.shape[0] / float(n)
w_2 = w2train.shape[0] / float(n)
print 'prior w1:', w_1
print 'prior w2:', w_2
# likelihood
mu_1, s_1 = gauss_mle_1d(w1train)
mu_2, s_2 = gauss_mle_1d(w2train)
post_1 = gaussian(test,mu_1,s_1)
post_2 = gaussian(test,mu_2,s_2)
print 'p(w1|x)=',post_1
print 'p(w2|x)=',post_2
p_1 = post_1*w_1
p_2 = post_2*w_2
print 'class 1',p_1
print 'class 2',p_2
print 'bla_1', p_1 / (p_1+p_2)
print 'bla_2', p_2 / (p_1+p_2)
x1 = np.linspace(-3,8,100)
plt.title('Epic Info')
plt.ylabel('Y axis')
plt.xlabel('X axis')
plt.plot(x1,mlab.normpdf(x1,mu_1,s_1),label='estimate class1')
plt.plot(x1,mlab.normpdf(x1,mu_2,s_2),label='estimate class2')
plt.legend()
plt.text(-2,0.7,'class 1:%s\nclass2: %s'%(p_1,p_2))
plt.plot(test,0,'o',label='test point')
plt.show()
示例6: test_kernel_smoothing
def test_kernel_smoothing(self):
# Qualitatively view kernel smoothed noisy Gaussian landscape
# Make Normal distribution, and secondary smaller normal.
realNorm = np.array([mlab.normpdf(i,40,10) for i in range(100)])
realNorm = realNorm / np.max(realNorm)
gaussBlip = np.array([mlab.normpdf(i,80,3) for i in range(100)])
gaussBlip = gaussBlip / np.max(gaussBlip)
signal = realNorm + (gaussBlip * 0.5)
# Add noise.
noise = np.random.random(100)
signal = (signal * noise) + (0.2 * noise)
signal = signal / np.sum(signal)
signal = np.concatenate((signal, signal))
# Apply kernel smoothing.
smoothGauss = analysis.force._kernel_smoothing(signal, 0.25)
smootherGauss = analysis.force._kernel_smoothing(signal, 0.75)
smoothestGauss = analysis.force._kernel_smoothing(signal, 0.98)
# Compare kernel smoothed plot to noisy data plot.
plot.plot(signal, 'k')
plot.hold(True)
plot.plot(smoothGauss, 'm--')
plot.plot(smootherGauss, 'c--')
plot.plot(smoothestGauss, 'r--')
plot.hold(False)
plot.show()
示例7: get_prob_for_distributions
def get_prob_for_distributions(p):
"""
Based on the integral of the three normal distributions,
the likelihood from which of the three distributions a distance is to be drawn
is calculated here.
Returns the three probabilities for the three distributions.
"""
w1 = p[0]
mu1 = p[1]
sigma1 = p[2]
w2 = p[3]
mu2 = p[4]
sigma2 = p[5]
w3 = p[6]
mu3 = p[7]
sigma3 = p[8]
dist_range = (0, 4.330310991999920844e+01)
x = np.linspace(dist_range[0], dist_range[1], 1000)
A1 = np.array(w1 * mlab.normpdf(x, mu1, sigma1)).sum()
A2 = np.array(w2 * mlab.normpdf(x, mu2, sigma2)).sum()
A3 = np.array(w3 * mlab.normpdf(x, mu3, sigma3)).sum()
p1 = A1 / (A1 + A2 + A3)
p2 = A2 / (A1 + A2 + A3)
p3 = A3 / (A1 + A2 + A3)
return p1, p2, p3
示例8: kldistancecluster
def kldistancecluster(planets):
nlist = nall(knownplanets, 'earth')[1]
ntrue = nall(knownplanets, 'earth')[0]
difference = variance(ntrue,nlist)
uniformdist = np.asarray(np.random.uniform(0.0,0.5,len(difference)))
difference = np.asarray(difference)
plt.hist(nlist, bins = 25, color = 'blue', alpha = 0.7, normed = True)
plt.hist(ntrue, bins = 25, color = 'green', alpha = 0.5, normed = True)
# Find best fit
x = np.linspace(0.0, 8, 25)
best_fit_uniform = mlab.normpdf(x, np.mean(nlist), np.std(nlist))
best_fit_dif = mlab.normpdf(x, np.mean(ntrue), np.std(ntrue))
plt.plot(x, best_fit_uniform, label = 'unif')
plt.plot(x, best_fit_dif, label = 'dif')
plt.xlabel('Distribution Value')
plt.ylabel('Frequency')
blue = mpatches.Patch(color='blue', label = 'Normed PDF for Integer Distribution')
green = mpatches.Patch(color = 'green', label = 'Normed PDF for Calculate Rank')
plt.legend(handles = [blue, green])
plt.text(3.4, 1.0, 'KL Divergence: \n ( rank, integer distribution) = 0.0112', style='italic', bbox={'facecolor':'red', 'alpha':0.5, 'pad':10})
plt.show()
#kldiv = stats.entropy(difference, qk=uniformdist, base=None)
kldiv = stats.entropy(nlist, qk=ntrue, base=None)
return(kldiv)
开发者ID:sam-lev,项目名称:SpectralGraphSetSimilarityAnalysisForQuantumStructuringInKeplerianSystems,代码行数:28,代码来源:schrodingerkepleriananalysis.py
示例9: plot_bourgdata
def plot_bourgdata(N1,N2):
A=TRICLAIRModele()
Tb15 = A.get_data_triathlon(link='/triathlon-bourg-resultats-1996.htm',year=2015)
Tb14 = A.get_data_triathlon(link='/triathlon-bourg-resultats-1715.htm',year=2014)
S15_ = map(lambda x: x.total_seconds()/60,Tb15['Scratch'].dropna())
S14_ = map(lambda x: x.total_seconds()/60,Tb14['Scratch'].dropna())
S15 = S15_[N1:N2]
S14 = S14_[N1:N2]
(mu14, sigma14) = norm.fit(S14)
(mu15, sigma15) = norm.fit(S15)
N_BINS = 50
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
n, bins, patches = ax.hist(S14, N_BINS,normed=1, facecolor='red', alpha=0.5,label=r'$\mathrm{2014:}\ \mu=%.3f,\ \sigma=%.3f$' %(mu14, sigma14))
y = mlab.normpdf( bins, mu14, sigma14)
l = ax.plot(bins, y, 'r-', linewidth=4)
n, bins, patches = ax.hist(S15, N_BINS, normed=1, facecolor='green', alpha=0.5,label=r'$\mathrm{ 2015:}\ \mu=%.3f,\ \sigma=%.3f$' %(mu15, sigma15))
y = mlab.normpdf( bins, mu15, sigma15)
l = ax.plot(bins, y, 'g-', linewidth=4)
fig.tight_layout()
ax.set_xlabel('Scratch Time (minutes)')
ax.set_ylabel('Number of athletes per scratch time (normalized)')
ax.legend(loc='best', fancybox=True, framealpha=0.5)
ax.set_title(r'$\mathrm{Athletes\ from\ rank\ } %d \mathrm{\ to\ } %d$' %(N1, N2))
plt.show()
示例10: avg_score_distribution
def avg_score_distribution(n, m, data_points=10e4, bins=100, visualize=False):
'''
Returns estimated mean and standard deviation of score distribution
for randomized amino acid recognition result
n := sum of all fragment lengths
m := length of sequence
'''
assert n <= m
scores = []
for i in range(int(data_points)):
p = random(n)
avg = 1 - ((m - n + p.sum()) / m)
scores.append(avg)
data = array(scores)
mu = mean(data) ## mean value
sigma = std(data) ## standard deviation
if visualize:
n, bins, patches = plt.hist(data, bins, normed=1, alpha=.3)
y = mlab.normpdf(bins, mu, sigma)
plt.plot(bins, y, 'r-', linewidth=1)
plt.vlines(mu, 0, mlab.normpdf([mu], mu, sigma), colors='r')
plt.show()
return mu, sigma
示例11: compute_costed_threshold
def compute_costed_threshold(weight, thresholds, meanS1, sdS1, meanS2, sdS2):
"""Compute the costed threshold of two spike responses to
two independent stimuli.
Args:
weight: costed threshold multiplier
thresholds: values to test for suitability
meanS1: mean of firing rate distribution triggered by stimulus 1
sdS1: standard deviation of firing rate distribution triggered by stimulus 1
meanS2: mean of firing rate distribution triggered by stimulus 2
sdS1: standard deviation of firing rate distribution triggered by stimulus 2
Returns:
neuronal firing tate as which to set optimum costed threshold"""
opt_thresh = 0.0
for threshold in thresholds:
Ps1 = mlab.normpdf(threshold, meanS1, sdS1)
Ps2 = mlab.normpdf(threshold, meanS2, sdS2)
ratio_raw = Ps2 / Ps1 # make likelihood twice for Ps2
ratio = round(ratio_raw, 1)
print "Ps1 = %s, Ps2 = %s. Threshold = %s. Ratio raw = %s Weight = %s\n" % (Ps1, Ps2, threshold, ratio_raw, ratio)
if ratio == weight:
opt_thresh = threshold
return opt_thresh
示例12: extract_coarse_coding_features_absolute
def extract_coarse_coding_features_absolute(self, phone_duration):
dur = int(phone_duration)
cc_feat_matrix = numpy.zeros((dur, 3))
npoints1 = (dur*2)*10+1
npoints2 = (dur-1)*10+1
npoints3 = (2*dur-1)*10+1
x1 = numpy.linspace(-dur, dur, npoints1)
x2 = numpy.linspace(1, dur, npoints2)
x3 = numpy.linspace(1, 2*dur-1, npoints3)
mu1 = 0
mu2 = (1+dur)/2
mu3 = dur
variance = 1
sigma = variance*((dur/10)+2)
sigma1 = sigma
sigma2 = sigma-1
sigma3 = sigma
y1 = mlab.normpdf(x1, mu1, sigma1)
y2 = mlab.normpdf(x2, mu2, sigma2)
y3 = mlab.normpdf(x3, mu3, sigma3)
for i in range(dur):
cc_feat_matrix[i,0] = y1[(dur+1+i)*10]
cc_feat_matrix[i,1] = y2[i*10]
cc_feat_matrix[i,2] = y3[i*10]
for i in range(3):
cc_feat_matrix[:,i] = cc_feat_matrix[:,i]/max(cc_feat_matrix[:,i])
return cc_feat_matrix
示例13: plotting
def plotting(ls1, ls2, head):
# ls1 normal, ls2 satire
mu1 = np.mean(ls1)
mu2 = np.mean(ls2)
sigma1 = np.std(ls1) # standard deviation of distribution
sigma2 = np.std(ls2)
x = ls1
y = ls2
plt.figure(1)
num_bins = 100
# the histogram of the data
n1, bins1, patches1 = plt.hist(x, num_bins, normed=1, facecolor='green', alpha=0.5, label='normal')
plt.legend(loc=2)
# add a 'best fit' line
x1 = mlab.normpdf(bins1, mu1, sigma1)
n2, bins2, patches2 = plt.hist(y, num_bins, normed=1, facecolor='red', alpha=0.5, label = 'satire')
plt.legend(loc=2)
# add a 'best fit' line
y2 = mlab.normpdf(bins2, mu2, sigma2)
plt.plot(bins1, x1, 'b--')
plt.plot(bins2, y2, 'b--')
plt.xlabel('Variance')
plt.ylabel('Density')
plt.title('Distribution of docs')
# Tweak spacing to prevent clipping of ylabel
plt.subplots_adjust(left=0.15)
if head == True: filename = 'dist_head.png'
elif head == False: filename = 'dist.png'
plt.savefig(filename, format='png')
示例14: gaussian_1d
def gaussian_1d(data, Pi, means, sds, N, K):
x = np.linspace(min(data), max(data), N);
gmm = 0*mlab.normpdf(x,0,1);
for i in range(len(Pi)):
gmm += Pi[i]*mlab.normpdf(x,means[i],sds[i]);
plt.plot(x, gmm);
示例15: peval_binormal
def peval_binormal(x, p):
# p[0] = w1
# p[1] = mu1
# p[2] = sigma1
# p[3] = w2
# p[4] = mu2
# p[5] = sigma2
return (p[0] * mlab.normpdf(x, p[1], p[2]) + p[3] * mlab.normpdf(x, p[4], p[5]))