本文整理汇总了Python中matplotlib.font_manager.FontProperties.set_family方法的典型用法代码示例。如果您正苦于以下问题:Python FontProperties.set_family方法的具体用法?Python FontProperties.set_family怎么用?Python FontProperties.set_family使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.font_manager.FontProperties
的用法示例。
在下文中一共展示了FontProperties.set_family方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from matplotlib.font_manager import FontProperties [as 别名]
# 或者: from matplotlib.font_manager.FontProperties import set_family [as 别名]
def main():
dataset = VOCBboxDataset(year='2007', split='test')
models = [
('Faster R-CNN', FasterRCNNVGG16(pretrained_model='voc07')),
('SSD300', SSD300(pretrained_model='voc0712')),
('SSD512', SSD512(pretrained_model='voc0712')),
]
indices = [29, 301, 189, 229]
fig = plot.figure(figsize=(30, 30))
for i, idx in enumerate(indices):
for j, (name, model) in enumerate(models):
img, _, _ = dataset[idx]
bboxes, labels, scores = model.predict([img])
bbox, label, score = bboxes[0], labels[0], scores[0]
ax = fig.add_subplot(
len(indices), len(models), i * len(models) + j + 1)
vis_bbox(
img, bbox, label, score,
label_names=voc_bbox_label_names, ax=ax
)
# Set MatplotLib parameters
ax.set_aspect('equal')
if i == 0:
font = FontProperties()
font.set_family('serif')
ax.set_title(name, fontsize=35, y=1.03, fontproperties=font)
plot.axis('off')
plot.tight_layout()
plot.show()
示例2: plot_markers
# 需要导入模块: from matplotlib.font_manager import FontProperties [as 别名]
# 或者: from matplotlib.font_manager.FontProperties import set_family [as 别名]
def plot_markers(data, x_base, name, map, xoff_sgn, width, off_fac,
markersize):
maxD = 0
ds = {}
used = []
font = FontProperties()
font.set_family('sans-serif')
font.set_size(10)
for (kind, subkind, dimval) in data:
try:
symb, lab = map[kind][subkind]
except KeyError:
raise KeyError("Invalid key for %s symbols"%name)
used.append((kind, subkind))
try:
ds[dimval] += 1
x_off = xoff_sgn*width*off_fac*(ds[dimval]-1)
except KeyError:
ds[dimval] = 1
x_off = 0
plot([x_base+x_off], [dimval], symb, markersize=markersize)
# hack tweaks
## if lab=='C':
## x_off -= width/15
if lab=='A':
x_off += width/30
text(x_base+x_off-width*.15, dimval-width*2., lab,
fontproperties=font)
if dimval > maxD:
maxD = dimval
return ds, maxD, used
示例3: plot_triangle
# 需要导入模块: from matplotlib.font_manager import FontProperties [as 别名]
# 或者: from matplotlib.font_manager.FontProperties import set_family [as 别名]
def plot_triangle(self):
font_ = FontProperties()
font_.set_family('sans-serif')
font_.set_weight('normal')
font_.set_style('italic')
self.fig = figure()
alpha = 0.8
alphal = 0.5
third_range = np.linspace(-0.0277, 0.21, 10000)
second_upper = 2*third_range + 2.0/9.0
plot(third_range, second_upper, color='k', alpha=alphal)
second_right = 1.5*(abs(third_range)*4.0/3.0)**(2.0/3.0)
plot(third_range, second_right, color='k', alpha=alphal)
connectionstyle="arc3,rad=.1"
lw = 0.5
plot(np.array([0.0, 0.0]), np.array([0.0, 2.0/9.0]), color='k', alpha=alphal)
gca().annotate(r'Isotropic limit', xy=np.array([0, 0]), xytext=np.array([0.05, 0.02]), fontproperties=font_, rotation=0, alpha=alpha, arrowprops=dict(arrowstyle="->", connectionstyle=connectionstyle, lw=lw))
gca().annotate(r'Plane strain', xy=np.array([0, 1.0/9.0/2]), xytext=np.array([0.07, 0.07]), fontproperties=font_, rotation=0, alpha=alpha, arrowprops=dict(arrowstyle="->", connectionstyle=connectionstyle, lw=lw))
gca().annotate(r'One component limit', xy=np.array([third_range[-1], second_upper[-1]]), xytext=np.array([0.00, 0.6]), fontproperties=font_, rotation=0, alpha=alpha, arrowprops=dict(arrowstyle="->", connectionstyle=connectionstyle, lw=lw))
gca().annotate(r'Axisymmetric contraction', xy=np.array([third_range[1000/2], second_right[1000/2]]), xytext=np.array([0.09, 0.12]), fontproperties=font_, rotation=0, alpha=alpha, arrowprops=dict(arrowstyle="->", connectionstyle=connectionstyle, lw=lw))
gca().annotate(r'Two component axisymmetric', xy=np.array([third_range[0], second_right[0]]), xytext=np.array([0.11, 0.17]), fontproperties=font_, rotation=0, alpha=alpha, arrowprops=dict(arrowstyle="->", connectionstyle=connectionstyle, lw=lw))
gca().annotate(r'Two component plane strain', xy=np.array([0, 2.0/9.0]), xytext=np.array([0.13, 0.22]), fontproperties=font_, rotation=0, alpha=alpha, arrowprops=dict(arrowstyle="->", connectionstyle=connectionstyle, lw=lw))
gca().annotate(r'Axisymmetric expansion', xy=np.array([third_range[4000], second_right[4000]]), xytext=np.array([0.15, 0.27]), fontproperties=font_, rotation=0, alpha=alpha, arrowprops=dict(arrowstyle="->", connectionstyle=connectionstyle, lw=lw))
gca().annotate(r'Two component', xy=np.array([third_range[6000], second_upper[6000]]), xytext=np.array([0.05, 0.5]), fontproperties=font_, rotation=0, alpha=alpha, arrowprops=dict(arrowstyle="->", connectionstyle=connectionstyle, lw=lw))
self.ax = gca()
xlim(-0.05, 0.3)
ylim(0.0, 0.7)
grid(False)
gca().axis('off')
gcf().patch.set_visible(False)
tight_layout()
示例4: ageGrade_hist
# 需要导入模块: from matplotlib.font_manager import FontProperties [as 别名]
# 或者: from matplotlib.font_manager.FontProperties import set_family [as 别名]
def ageGrade_hist(results,title=None,style='bmh'):
'''
Draw an histogram of the Age Grade results with basic stats added in the corner
'''
# reset style first (if style has been changed before running the script)
plt.style.use('classic')
plt.style.use(style)
plt.style.use(r'.\large_font.mplstyle')
fig, ax = plt.subplots(figsize=(10,8))
ax.hist(results['Age Grade']*100,bins=np.arange(0,100,5),color='#A60628')
#ax.set_xlim(15,60)
ax.set_xlabel('Age Grade %',size='x-large')
#ax.set_ylim(0,40)
ax.set_ylabel('Count',size='x-large')
plt.title(title)
# add stats in a box
stats = results['Age Grade'].describe()
stats.iloc[1:]=stats.iloc[1:]*100
stats_text = "Count = {:.0f}\nMean = {:.1f}%\nMedian = {:.1f}%" +\
"\nMin = {:.1f}%\nMax = {:.1f}%"
stats_text = stats_text.format(stats['count'],
stats['mean'],stats['50%'],
stats['min'],stats['max'])
font0 = FontProperties()
font0.set_family('monospace')
ax.text(0.72,0.75,stats_text,fontsize=14,fontproperties=font0,
bbox=dict(facecolor='white'),transform=ax.transAxes)
示例5: make_legend
# 需要导入模块: from matplotlib.font_manager import FontProperties [as 别名]
# 或者: from matplotlib.font_manager.FontProperties import set_family [as 别名]
def make_legend(labels, colors, output_file):
""" Hack to generate a legend as a separate image. A dummy plot
is created in one figure, and its legend gets saved to an
output file.
Inputs:
labels - text labels for the legend
colors - list of colors for the legend (same length as labels)
output_file - filename for the resulting output figure
Outputs:
(None - output figure is written to output_file)
"""
if len(labels) != len(colors):
raise ValueError("Lists of labels and colors "
" should have the same length")
fig = plt.figure()
font_prop = FontProperties()
font_prop.set_size('xx-large')
font_prop.set_family('sans-serif')
seperate_legend = plt.figure(figsize=(5, 3.5))
ax = fig.add_subplot(111)
N = len(labels)
# Make a dummy pie chart so we can steal its legend
wedges, texts = ax.pie([100/N]*N, colors=colors)
seperate_legend.legend(wedges, labels, 'center',
prop=font_prop, frameon=False)
seperate_legend.savefig(output_file)
示例6: format_plot
# 需要导入模块: from matplotlib.font_manager import FontProperties [as 别名]
# 或者: from matplotlib.font_manager.FontProperties import set_family [as 别名]
def format_plot(axes, xlim=None, ylim=None, xlabel='', ylabel=''):
'''format 2d-plot black and with with times legends
'''
#-------------------------------------------------------------------
# configure the style of the font to be used for labels and ticks
#-------------------------------------------------------------------
#
from matplotlib.font_manager import FontProperties
font = FontProperties()
font.set_name('Script MT')
font.set_family('serif')
font.set_style('normal')
# font.set_size('small')
font.set_size('large')
font.set_variant('normal')
font.set_weight('medium')
if xlim != None and ylim != None:
axes.axis([0, xlim, 0., ylim], fontproperties=font)
# format ticks for plot
#
locs, labels = axes.xticks()
axes.xticks(locs, map(lambda x: "%.0f" % x, locs), fontproperties=font)
axes.xlabel(xlabel, fontproperties=font)
locs, labels = axes.yticks()
axes.yticks(locs, map(lambda x: "%.0f" % x, locs), fontproperties=font)
axes.ylabel(ylabel, fontproperties=font)
示例7: time_hist
# 需要导入模块: from matplotlib.font_manager import FontProperties [as 别名]
# 或者: from matplotlib.font_manager.FontProperties import set_family [as 别名]
def time_hist(results,title=None,style='bmh'):
'''
Draw an histogram of the time results with basic stats added in the corner
'''
# reset style first (if style has been changed before running the script)
plt.style.use('classic')
plt.style.use(style)
plt.style.use(r'.\large_font.mplstyle')
fig, ax = plt.subplots(figsize=(10,8))
ax.hist(results['Time'],bins=range(15,61))
ax.set_xlim(15,60)
ax.set_xlabel('Time (min)',size='x-large')
ax.set_ylim(0,40)
ax.set_ylabel('Count',size='x-large')
plt.title(title)
# add stats in a box in the corner
stats = results['Time'].describe()
stats_text = "Count = {:.0f}\nMean = {}\nMedian = {}\nMin = {}\nMax = {}".format(
stats['count'],
minutes_to_timeString(stats['mean']),
minutes_to_timeString(stats['50%']),
minutes_to_timeString(stats['min']),
minutes_to_timeString(stats['max']))
font0 = FontProperties()
font0.set_family('monospace')
ax.text(47,30,stats_text,fontsize=14,fontproperties=font0,bbox=dict(facecolor='white'))
示例8: plot_basics
# 需要导入模块: from matplotlib.font_manager import FontProperties [as 别名]
# 或者: from matplotlib.font_manager.FontProperties import set_family [as 别名]
def plot_basics(data, data_inst, fig, units):
'''
This function is the main plotting function. Adapted from Newman's powerlaw package.
'''
import pylab
pylab.rcParams['xtick.major.pad']='8'
pylab.rcParams['ytick.major.pad']='8'
pylab.rcParams['font.sans-serif']='Arial'
from matplotlib import rc
rc('font', family='sans-serif')
rc('font', size=10.0)
rc('text', usetex=False)
from matplotlib.font_manager import FontProperties
panel_label_font = FontProperties().copy()
panel_label_font.set_weight("bold")
panel_label_font.set_size(12.0)
panel_label_font.set_family("sans-serif")
n_data = 1
n_graphs = 4
from powerlaw import plot_pdf, Fit, pdf
ax1 = fig.add_subplot(n_graphs,n_data,data_inst)
x, y = pdf(data, linear_bins=True)
ind = y>0
y = y[ind]
x = x[:-1]
x = x[ind]
ax1.scatter(x, y, color='r', s=.5, label='data')
plot_pdf(data[data>0], ax=ax1, color='b', linewidth=2, label='PDF')
from pylab import setp
setp( ax1.get_xticklabels(), visible=False)
plt.legend(loc = 'bestloc')
ax2 = fig.add_subplot(n_graphs,n_data,n_data+data_inst, sharex=ax1)
plot_pdf(data[data>0], ax=ax2, color='b', linewidth=2, label='PDF')
fit = Fit(data, discrete=True)
fit.power_law.plot_pdf(ax=ax2, linestyle=':', color='g',label='w/o xmin')
p = fit.power_law.pdf()
ax2.set_xlim(ax1.get_xlim())
fit = Fit(data, discrete=True,xmin=3)
fit.power_law.plot_pdf(ax=ax2, linestyle='--', color='g', label='w xmin')
from pylab import setp
setp(ax2.get_xticklabels(), visible=False)
plt.legend(loc = 'bestloc')
ax3 = fig.add_subplot(n_graphs,n_data,n_data*2+data_inst)#, sharex=ax1)#, sharey=ax2)
fit.power_law.plot_pdf(ax=ax3, linestyle='--', color='g',label='powerlaw')
fit.exponential.plot_pdf(ax=ax3, linestyle='--', color='r',label='exp')
fit.plot_pdf(ax=ax3, color='b', linewidth=2)
ax3.set_ylim(ax2.get_ylim())
ax3.set_xlim(ax1.get_xlim())
plt.legend(loc = 'bestloc')
ax3.set_xlabel(units)
示例9: darkcurrent_channel_analyse
# 需要导入模块: from matplotlib.font_manager import FontProperties [as 别名]
# 或者: from matplotlib.font_manager.FontProperties import set_family [as 别名]
def darkcurrent_channel_analyse(directory):
hfont = {'family':'serif', 'fontsize': 12}
cal_dict = sort_ibsen_by_int(directory)
for key, val in sorted(cal_dict.items()):
plt.plot(val['darkcurrent']['wave'], val['darkcurrent']['mean'], label='%1.f' % key)
plt.xlabel(r'Wavelength $\lambda$ [nm]', **hfont)
plt.ylabel(r'Signal [DN]', **hfont)
fontP = FontProperties()
fontP.set_family('serif')
fontP.set_size('small')
legend = plt.legend(loc=0, ncol=1, prop = fontP,fancybox=True,
shadow=False,title='Integration Times [ms]',bbox_to_anchor=(1.0, 1.0))
#plt.setp(legend.get_title(),fontsize='small')
plt.tight_layout()
plt.show()
plt.plot(cal_dict[5]['darkcurrent']['wave'], cal_dict[5]['reference']['mean'], label='Mean')
plt.plot(cal_dict[5]['darkcurrent']['wave'], cal_dict[5]['darkcurrent']['mean'], label='Mean')
plt.plot(cal_dict[5]['darkcurrent']['wave'], cal_dict[5]['darkcurrent']['data'], alpha=0.05)
plt.plot(cal_dict[5]['darkcurrent']['wave'], cal_dict[5]['reference']['data'], alpha=0.05)
plt.xlabel(r'Wavelength $\lambda$ [nm]', **hfont)
plt.ylabel(r'Signal [DN]', **hfont)
plt.show()
sorted_keys = sorted(cal_dict.keys()) #[4:-4]
tmp_channels = range(len(cal_dict[sorted_keys[0]]['darkcurrent']['wave']))
noise_dict = dict()
#tmp_channels = np.delete(tmp_channels, [187, 258, 265, 811])794
gs = gridspec.GridSpec(2, 2)
ax1 = plt.subplot(gs[0, :])
ax2 = plt.subplot(gs[1, :])
IntTimes = np.array(sorted_keys)
noise = np.array([])
dark_tmp = cal_dict[110]['darkcurrent']['mean']
#ax1.plot( dark_tmp, '+')
print(np.where(dark_tmp > 2361 ))
for channel in tmp_channels:
noise_dict[channel] = dict()
dark = np.array([cal_dict[key]['darkcurrent']['mean'][channel] for key in sorted_keys])
noise_dict[channel]['dark'] = dark
coeffs_dark = np.polyfit(sorted_keys, dark, deg=1)
noise = np.append(noise, coeffs_dark[1])
ax1.plot(IntTimes, dark, '+')
#ax1.plot(IntTimes, noise_dict[258]['dark'])
ax2.plot(tmp_channels, noise)
ax1.set_xlabel('Integration Time [ms]', **hfont)
ax2.set_xlabel(r'Wavelength $\lambda$ [nm]', **hfont)
ax1.set_ylabel('Signal [DN]', **hfont)
ax2.set_ylabel('Signal [DN]', **hfont)
plt.tight_layout()
plt.show()
示例10: label
# 需要导入模块: from matplotlib.font_manager import FontProperties [as 别名]
# 或者: from matplotlib.font_manager.FontProperties import set_family [as 别名]
def label(lats, lons, text):
#y = xy[1] - 0.15 # shift y-value for label so that it's below the artist
lons_label = (np.max(lons)+np.min(lons)) / 2
lats_label = (np.max(lats) + np.min(lats)) / 2
x, y = (lons_label, lats_label )
#plt.text(x, y, text, color='#262626', ha="center", va="center", size=32, backgroundcolor='white', alpha=0.4 )
font0 = FontProperties()
font0.set_family('sans-serif')
plt.text(x, y, text, color='black', ha="center", va="center", size=64 , fontweight='bold', fontproperties=font0)
if (plot_coords[2]=='Southern Indian Ocean'):
plt.text(x, y, text, color='red', ha="center", va="center", size=64, fontproperties=font0)
开发者ID:peterwilletts24,项目名称:Python-Scripts,代码行数:14,代码来源:plot_from_pp_avg5216_regrid_diurnal_area_boxes.py
示例11: setLabels
# 需要导入模块: from matplotlib.font_manager import FontProperties [as 别名]
# 或者: from matplotlib.font_manager.FontProperties import set_family [as 别名]
def setLabels(self):
""" Set plot attributes """
self.ppm.axpp.set_title("Seismograms")
if self.opts.filemode == "pkl":
axstk = self.axstk
trans = transforms.blended_transform_factory(axstk.transAxes, axstk.transAxes)
axstk.text(1, 1.01, self.opts.pklfile, transform=trans, va="bottom", ha="right", color="k")
axpp = self.ppm.axpp
trans = transforms.blended_transform_factory(axpp.transAxes, axpp.transData)
font = FontProperties()
font.set_family("monospace")
axpp.text(1.025, 0, " " * 8 + "qual= CCC/SNR/COH", transform=trans, va="center", color="k", fontproperties=font)
示例12: make_legend
# 需要导入模块: from matplotlib.font_manager import FontProperties [as 别名]
# 或者: from matplotlib.font_manager.FontProperties import set_family [as 别名]
def make_legend(output_file, taxa_labels, colors):
""" Hack to generate a separate legend image
Creates a garbage pie chart (pretty, though)
and saves its legend as a separate figure
"""
fig = plt.figure()
font_prop = FontProperties()
font_prop.set_size('xx-large')
font_prop.set_family('sans-serif')
seperate_legend = plt.figure(figsize=(5,3.5))
ax = fig.add_subplot(111)
N = len(taxa_labels)
wedges, texts = ax.pie([100/N]*N, colors=colors)
seperate_legend.legend(wedges, taxa_labels, 'center', prop=font_prop, frameon=False)
seperate_legend.savefig(output_file)
示例13: watermark_seismic
# 需要导入模块: from matplotlib.font_manager import FontProperties [as 别名]
# 或者: from matplotlib.font_manager.FontProperties import set_family [as 别名]
def watermark_seismic(ax, text, size, colour, xn, yn=None):
"""
Add semi-transparent text to the seismic.
"""
font = FontProperties()
font.set_weight('bold')
font.set_family('sans-serif')
style = {'size': size,
'color': colour,
'alpha': 0.5,
'fontproperties': font
}
alignment = {'rotation': 33,
'horizontalalignment': 'left',
'verticalalignment': 'baseline'
}
params = dict(style, **alignment)
# Axis ranges.
xr = ax.get_xticks()
yr = ax.get_yticks()
aspect = xr.size / yr.size
yn = yn or (xn / aspect)
yn += 1
# Positions for even lines.
xpos = np.linspace(xr[0], xr[-1], xn)[:-1]
ypos = np.linspace(yr[0], yr[-1], yn)[:-1]
# Intervals.
xiv = xpos[1] - xpos[0]
yiv = ypos[1] - ypos[0]
# Adjust the y positions.
ypos += yiv / 2
# Place everything.
c = False
for y in ypos:
for x in xpos:
if c:
xi = x + xiv / 2
else:
xi = x
ax.text(xi, y, text, clip_box=ax.clipbox, clip_on=True, **params)
c = not c
return ax
示例14: labelStation
# 需要导入模块: from matplotlib.font_manager import FontProperties [as 别名]
# 或者: from matplotlib.font_manager.FontProperties import set_family [as 别名]
def labelStation(self):
"""
Label stations at y axis on the right.
The xcoords of the transform are axes, and the yscoords are data.
"""
axss = self.axss
stations = [ sacdh.netsta for sacdh in self.saclist ]
trans = transforms.blended_transform_factory(axss.transAxes, axss.transData)
font = FontProperties()
font.set_family('monospace')
for i in range(self.nseis):
axss.text(1.02, self.ybases[i], stations[i], transform=trans, va='center',
color=self.colors[i], fontproperties=font)
if self.opts.stack_on:
axss.text(1.02, self.stackbase, 'Stack', transform=trans, va='center',
color=self.stackcolor, fontproperties=font)
示例15: temperature
# 需要导入模块: from matplotlib.font_manager import FontProperties [as 别名]
# 或者: from matplotlib.font_manager.FontProperties import set_family [as 别名]
def temperature():
FONTSTYLE = "serif"
FONTSIZE = 12
hfont = {"family": FONTSTYLE, "fontsize": FONTSIZE}
fontP = FontProperties()
fontP.set_family(FONTSTYLE)
fontP.set_size("small")
gs = gridspec.GridSpec(1, 1)
ax1 = plt.subplot(gs[0, :])
winter = "/home/jana_jo/DLR/Codes/measurements/LMU/291116_LMU/"
summer = "/home/jana_jo/DLR/Codes/measurements/Roof_DLR/2016_09_14RoofDLR/"
import glob
file_prefixes = ["darkcurrent"]
files_winter = sorted([file_ for file_ in glob.iglob(winter + "%s*" % file_prefixes[0])])[5:7]
files_summer = sorted([file_ for file_ in glob.iglob(summer + "%s*" % file_prefixes[0])])[3:5]
files_winter = [files_winter[0]]
for win in files_winter:
print(win)
win_dict = ip.parse_ibsen_file(win)
ax1.plot(
win_dict["wave"][50:], win_dict["mean"][50:], color="darkblue", label="-3 $^{\circ}$C" % win_dict["IntTime"]
)
files_summer = [files_summer[0]]
for sum in files_summer:
print(sum)
sum_dict = ip.parse_ibsen_file(sum)
ax1.plot(
sum_dict["wave"][50:],
sum_dict["mean"][50:],
color="sandybrown",
label="30 $^{\circ}$C" % sum_dict["IntTime"],
)
assert win_dict["IntTime"] == sum_dict["IntTime"]
ax1.set_ylabel("DN [a.u.]", **hfont)
ax1.set_ylabel("DN [a.u.]", **hfont)
ax1.set_xlabel("Wavelength [nm]", **hfont)
ax1.legend(loc="best", prop=fontP, title=r" %s ms Integrationtime at temperature:" % win_dict["IntTime"])
plt.setp(ax1.get_legend().get_title(), fontsize="small", family=FONTSTYLE)
plt.tight_layout()
plt.show()