本文整理汇总了Python中matplotlib.colors.colorConverter.to_rgb函数的典型用法代码示例。如果您正苦于以下问题:Python to_rgb函数的具体用法?Python to_rgb怎么用?Python to_rgb使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了to_rgb函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _compute_colors
def _compute_colors(self, array_x, array_y):
# on calcule le maximum absolu de toutes valeurs pour former un carré
abs_maximum = max([max(map(abs,array_x)), max(map(abs,array_y))])
diagonal_length = norm(array([abs_maximum, abs_maximum])) # longueur de la projection
diag = array([diagonal_length, diagonal_length])
anti_diag = array([-diagonal_length, diagonal_length])
# on instancie le gradient de couleur sur le modèle de couleur du centre
linear_normalizer = mpl.colors.Normalize(vmin=-abs_maximum, vmax=abs_maximum)
log_normalizer = mpl.colors.SymLogNorm(abs_maximum/5, vmin=-abs_maximum, vmax=abs_maximum)
r_to_b_gradient = cm.ScalarMappable(norm=linear_normalizer, cmap=redtoblue)
# on calcule le produit scalaire de chaque valeur avec la diagonale
# ensuite, on calcule la couleur à partir de la valeur de la projection sur la diagonale
hex_color_values = []
for i, x in enumerate(array_x):
# on calcule les produits scalaire du point avec la diagonale et l'antidiagonale
scal_p_diag = dot(array([array_x[i], array_y[i]]), diag) / diagonal_length
scal_p_antidiag = dot(array([array_x[i], array_y[i]]), anti_diag) / diagonal_length
#on calcule le gradient de couleur sur la diagonale
on_diag_color = colorConverter.to_rgb(r_to_b_gradient.to_rgba(scal_p_diag))
# puis on utilise cette couleur (en rgb) pour définir un gradient, dont la valeur sera estimée
# sur l'antidiagonale
on_diag_gradient = make_white_gradient(on_diag_color, log_normalizer)
final_color = on_diag_gradient.to_rgba(scal_p_antidiag)
#on traduit en HEX
hex_color_values.append(rgb2hex(colorConverter.to_rgb(final_color)))
return hex_color_values, abs_maximum
示例2: add_bars
def add_bars(self, colorup='g', colordown='r', alpha=0.5, width=1):
r,g,b = colorConverter.to_rgb(colorup)
colorup = r,g,b,alpha
r,g,b = colorConverter.to_rgb(colordown)
colordown = r,g,b,alpha
colord = {True: colorup, False: colordown}
colors = [colord[open<close] for open, close in zip(self.opens, self.closes)]
delta = width/2.0
bars = [((x-delta, 0), (x-delta, y), (x+delta, y), (x+delta, 0))
for x, y in zip(self.dates, self.volumes)]
barCollection = PolyCollection(bars, facecolors = colors)
#self.ax.step(self.dates, self.volumes)
#self.ax.add_collection(barCollection)
#self.ax.bar(self.dates, self.volumes)
#self.ax.plot(self.dates, self.volumes)
self.ax.fill_between(self.dates, self.volumes, alpha=0.5)
xmin, xmax = self.ax.get_xlim()
ys = [y for x, y in zip(self.dates, self.volumes) if xmin<=x<=xmax]
if ys:
self.ax.set_ylim([0, max(ys)*10])
for tick in self.ax.get_yticklabels():
tick.set_visible(False)
示例3: plot
def plot(self, widget, width=0.6,
colorup='r', colordown='g', lc='k', alpha=1):
"""docstring for plot"""
delta = self.width/2.
barVerts = [((i-delta, open),
(i-delta, close),
(i+delta, close),
(i+delta, open))
for i, open, close in zip(xrange(len(self.data)),
self.data.open,
self.data.close)
if open != -1 and close != -1]
rangeSegments = [((i, low), (i, high))
for i, low, high in zip(
xrange(len(self.data)),
self.data.low,
self.data.high)
if low != -1]
r, g, b = colorConverter.to_rgb(self.colorup)
colorup = r, g, b, self.alpha
r, g, b = colorConverter.to_rgb(self.colordown)
colordown = r, g, b, self.alpha
colord = {
True: colorup,
False: colordown,
}
colors = [colord[open < close]
for open, close in zip(self.data.open, self.data.close)
if open != -1 and close != -1]
assert(len(barVerts) == len(rangeSegments))
useAA = 0, # use tuple here
lw = 0.5, # and here
r, g, b = colorConverter.to_rgb(self.lc)
linecolor = r, g, b, self.alpha
lineCollection = LineCollection(rangeSegments,
colors=(linecolor,),
linewidths=lw,
antialiaseds=useAA,
zorder=0)
barCollection = PolyCollection(barVerts,
facecolors=colors,
edgecolors=colors,
antialiaseds=useAA,
linewidths=lw,
zorder=1)
#minx, maxx = 0, len(rangeSegments)
#miny = min([low for low in self.data.low if low !=-1])
#maxy = max([high for high in self.data.high if high != -1])
#corners = (minx, miny), (maxx, maxy)
#ax.update_datalim(corners)
widget.autoscale_view()
# add these last
widget.add_collection(barCollection)
widget.add_collection(lineCollection)
#ax.plot(self.data.close, color = 'y')
#lineCollection, barCollection = None, None
return lineCollection, barCollection
示例4: plot
def plot(self, widget, data, width=0.6,
colorup='r', colordown='g', lc='k', alpha=1):
if self.lineCollection:
self.lineCollection.remove()
if self.barCollection:
self.barCollection.remove()
self.set_yrange(data.low.values, data.high.values)
self.data = data
"""docstring for plot"""
delta = self.width / 2.
barVerts = [((i - delta, open),
(i - delta, close),
(i + delta, close),
(i + delta, open))
for i, open, close in zip(range(len(self.data)),
self.data.open,
self.data.close)
if open != -1 and close != -1]
rangeSegments = [((i, low), (i, high))
for i, low, high in zip(range(len(self.data)),
self.data.low,
self.data.high)
if low != -1]
r, g, b = colorConverter.to_rgb(self.colorup)
colorup = r, g, b, self.alpha
r, g, b = colorConverter.to_rgb(self.colordown)
colordown = r, g, b, self.alpha
colord = {
True: colorup,
False: colordown,
}
colors = [colord[open < close]
for open, close in zip(self.data.open, self.data.close)
if open != -1 and close != -1]
assert(len(barVerts) == len(rangeSegments))
useAA = 0, # use tuple here
lw = 0.5, # and here
r, g, b = colorConverter.to_rgb(self.lc)
linecolor = r, g, b, self.alpha
self.lineCollection = LineCollection(rangeSegments,
colors=(linecolor,),
linewidths=lw,
antialiaseds=useAA,
zorder=0)
self.barCollection = PolyCollection(barVerts,
facecolors=colors,
edgecolors=colors,
antialiaseds=useAA,
linewidths=lw,
zorder=1)
widget.autoscale_view()
# add these last
widget.add_collection(self.barCollection)
widget.add_collection(self.lineCollection)
return self.lineCollection, self.barCollection
示例5: create_colormap
def create_colormap(col1, col2):
c1 = colorConverter.to_rgb(col1)
c2 = colorConverter.to_rgb(col2)
cdict = {
'red': ((0.,c1[0], c1[0]),(1.,c2[0], c2[0])),
'green': ((0.,c1[1], c1[1]),(1.,c2[1], c2[1])),
'blue': ((0.,c1[2], c1[2]),(1.,c2[2], c2[2]))
}
return LinearSegmentedColormap('custom', cdict, 256)
示例6: _to_rgb
def _to_rgb(c):
"""
Convert color *c* to a numpy array of *RGB* handling exeption
Parameters
----------
c: Matplotlib color
same as *color* in *colorAlpha_to_rgb*
output
------
rgbs: list of numpy array
list of c converted to *RGB* array
"""
if(getattr(c, '__iter__', False) == False): #if1: if c is a single element (number of string)
rgbs = [np.array(cC.to_rgb(c)),] #list with 1 RGB numpy array
else: #if1, else: if is more that one element
try: #try1: check if c is numberic or not
np.array(c) + 1
except (TypeError, ValueError): #try1: if not numerics is not (only) RGB or RGBA colors
#convert the list/tuble/array of colors into a list of numpy arrays of RGB
rgbs = [np.array( cC.to_rgb(i)) for i in c]
except Exception as e: #try1: if any other exception raised
print("Unexpected error: {}".format(e))
raise e #raise it
else: #try1: if the colors are all numberics
arrc = np.array(c) #convert c to a numpy array
arrcsh = arrc.shape #shape of the array
if len(arrcsh)==1: #if2: if 1D array given
if(arrcsh[0]==3 or arrcsh[0]==4): #if3: if RGB or RBGA
rgbs = [np.array(cC.to_rgb(c)),] #list with 1 RGB numpy array
else: #if3, else: the color cannot be RBG or RGBA
raise ValueError('Invalid rgb arg "{}"'.format(c))
#end if3
elif len(arrcsh)==2: #if2, else: if 2D array
if(arrcsh[1]==3 or arrcsh[1]==4): #if4: if RGB or RBGA
rgbs = [np.array(cC.to_rgb(i)) for i in c] #list with RGB numpy array
else: #if4, else: the color cannot be RBG or RGBA
raise ValueError('Invalid list or array of rgb')
#end if4
else: #if2, else: if more dimention
raise ValueError('The rgb or rgba values must be contained in a 1D or 2D list or array')
#end if2
#end try1
#end if1
return rgbs
示例7: volume_overlay
def volume_overlay(ax, opens, closes, volumes, colorup="k", colordown="r", width=4, alpha=1.0):
"""Add a volume overlay to the current axes. The opens and closes
are used to determine the color of the bar. -1 is missing. If a
value is missing on one it must be missing on all
Parameters
----------
ax : `Axes`
an Axes instance to plot to
opens : sequence
a sequence of opens
closes : sequence
a sequence of closes
volumes : sequence
a sequence of volumes
width : int
the bar width in points
colorup : color
the color of the lines where close >= open
colordown : color
the color of the lines where close < open
alpha : float
bar transparency
Returns
-------
ret : `barCollection`
The `barrCollection` added to the axes
"""
r, g, b = colorConverter.to_rgb(colorup)
colorup = r, g, b, alpha
r, g, b = colorConverter.to_rgb(colordown)
colordown = r, g, b, alpha
colord = {True: colorup, False: colordown}
colors = [colord[open < close] for open, close in zip(opens, closes) if open != -1 and close != -1]
delta = width / 2.0
bars = [((i - delta, 0), (i - delta, v), (i + delta, v), (i + delta, 0)) for i, v in enumerate(volumes) if v != -1]
barCollection = PolyCollection(
bars, facecolors=colors, edgecolors=((0, 0, 0, 1),), antialiaseds=(0,), linewidths=(0.5,)
)
ax.add_collection(barCollection)
corners = (0, 0), (len(bars), max(volumes))
ax.update_datalim(corners)
ax.autoscale_view()
# add these last
return barCollection
示例8: plot_hmm
def plot_hmm(means_, transmat, covars, initProbs, axes=None, clr=None, transition_arrows=True):
if axes != None:
axes(axes)
# f, axes = subplots(2)#,sharex=True, sharey=True)
# sca(axes[0])
global annotations
annotations = []
global means
means = []
colors = clr
# color_map = colors #[colorConverter.to_rgb(colors[i]) for i in range(len(means_))]
for i, mean in enumerate(means_):
# print_n_flush( "MEAN:", tuple(mean))
means.append(scatter(*tuple(mean), color=colorConverter.to_rgb(colors[i]), picker=10, label="State%i" % i))
annotate(s="%d" % i, xy=mean, xytext=(-10, -10), xycoords="data", textcoords="offset points",
alpha=1, bbox=dict(boxstyle='round,pad=0.2', fc=colorConverter.to_rgb(colors[i]), alpha=0.3))
# gca().add_patch(Ellipse(xy = means_[i], width = np.diag(covars[i])[0], height = np.diag(covars[i])[1],
# alpha=.15, color=colorConverter.to_rgb(colors[i])))
plot_cov_ellipse(covars[i], mean, alpha=.15, color=colorConverter.to_rgb(colors[i]))
x0, y0 = mean
prob_string = "P(t0)=%f" % initProbs[i]
for j, p in enumerate(transmat[i]):
xdif = 10
ydif = 5
s = "P(%d->%d)=%f" % (i, j, p)
# print_n_flush( "State%d: %s" % (i, s))
prob_string = "%s\n%s" % (prob_string, s)
if transition_arrows:
if i != j:
x1, y1 = means_[j]
# if transmat[i][j] is too low, we get an underflow here
# q = quiver([x0], [y0], [x1-x0], [y1-y0], alpha = 10000 * (transmat[i][j]**2),
alpha = 10 ** -300
if p > 10 ** -100:
alpha = (100 * p) ** 2
q = quiver([x0], [y0], [x1 - x0], [y1 - y0], alpha=1 / log(alpha),
scale_units='xy', angles='xy', scale=1, width=0.005, label="P(%d->%d)=%f" % (i, j, p))
# legend()
annotations.append(annotate(s=prob_string, xy=mean, xytext=(0, 10), xycoords="data", textcoords="offset points",
alpha=1,
bbox=dict(boxstyle='round,pad=0.2', fc=colorConverter.to_rgb(colors[i]), alpha=0.3),
picker=True,
visible=False))
# print_n_flush( "State%i is %s" % (i, colors[i]))
cid = gcf().canvas.mpl_connect('pick_event', on_pick)
示例9: gradient
def gradient(cmin, cmax):
if isinstance(cmin, str):
cmin = colorConverter.to_rgb(cmin)
if isinstance(cmax, str):
cmax = colorConverter.to_rgb(cmax)
cdict = {
'red': [(0, 0, cmin[0]),
(1, cmax[0], 1)],
'green': [(0, 0, cmin[1]),
(1, cmax[1], 1)],
'blue': [(0, 0, cmin[2]),
(1, cmax[2], 1)]
}
return mpl.colors.LinearSegmentedColormap('cmap', cdict, N=1000)
示例10: add_aliasing_edges
def add_aliasing_edges(G, only_states, belief_mdp, pomdp): # @UnusedVariable
for s1 in only_states:
for s2 in only_states:
if s1 == s2:
continue
obs1 = pomdp.get_observations_dist_given_belief(s1)
obs2 = pomdp.get_observations_dist_given_belief(s2)
can_distinguish = len(set(obs1) & set(obs2)) == 0
# if not len(obs1) == 0 or not len(obs2) == 0:
# print('not deterministic, %s , %s , %s ,
# %s ' % (s1, obs1, s2, obs2))
# continue
if not can_distinguish:
# aliasing!
G.add_edge(s1, s2)
G.edge[s1][s2]['type'] = 'aliasing'
G.edge[s1][s2]['edge_color'] = colorConverter.to_rgb('y')
G.edge[s1][s2]['edge_style'] = 'dotted'
return G
示例11: from_list
def from_list(name, colors, N=256, gamma=1.0):
"""
Make a linear segmented colormap with *name* from a sequence
of *colors* which evenly transitions from colors[0] at val=0
to colors[-1] at val=1. *N* is the number of rgb quantization
levels.
Alternatively, a list of (value, color) tuples can be given
to divide the range unevenly.
"""
if not cbook.iterable(colors):
raise ValueError('colors must be iterable')
if cbook.iterable(colors[0]) and len(colors[0]) == 2 and \
not cbook.is_string_like(colors[0]):
# List of value, color pairs
vals, colors = zip(*colors)
else:
vals = np.linspace(0., 1., len(colors))
cdict = dict(red=[], green=[], blue=[])
for val, color in zip(vals, colors):
r,g,b = colorConverter.to_rgb(color)
cdict['red'].append((val, r, r))
cdict['green'].append((val, g, g))
cdict['blue'].append((val, b, b))
return MixedAlphaColormap(name, cdict, N, gamma)
示例12: color_to_hex
def color_to_hex(color):
"""Convert matplotlib color code to hex color code"""
if color is None or colorConverter.to_rgba(color)[3] == 0:
return 'none'
else:
rgb = colorConverter.to_rgb(color)
return '#{0:02X}{1:02X}{2:02X}'.format(*(int(255 * c) for c in rgb))
示例13: pastel
def pastel(colour, weight=2.4):
'''
Convert colour into a nice pastel shade
'''
rgb = asarray(colorConverter.to_rgb(colour))
# scale colour
maxc = max(rgb)
if maxc < 1.0 and maxc > 0:
# scale colour
scale = 1.0 / maxc
rgb = rgb * scale
# now decrease saturation
total = sum(rgb)
slack = 0
for x in rgb:
slack += 1.0 - x
# want to increase weight from total to weight
# pick x s.t. slack * x == weight - total
# x = (weight - total) / slack
x = (weight - total) / slack
rgb = [c + (x * (1.0-c)) for c in rgb]
return rgb
示例14: __init__
def __init__(self, label=None, marker="o", markersize=10,
color="blue", saturation=1, opaqcity=1, zorder=0):
self.label = label
self.marker = marker
self.markersize = markersize
self.color_rgb = colorConverter.to_rgb(color)
self.saturation = saturation
self.opaqcity = opaqcity
self.zorder = zorder
示例15: get_selection_box_colour
def get_selection_box_colour(series):
"""
Returns a colour (as an RGB tuple) that will be visible against the
background of the subplot.
"""
subplot = series.get_subplot()
bkgd_col = colorConverter.to_rgb(subplot.get_mpl_axes().get_axis_bgcolor())
return tuple([1.0 - c for c in bkgd_col])