当前位置: 首页>>代码示例>>Python>>正文


Python Normalize.autoscale方法代码示例

本文整理汇总了Python中matplotlib.colors.Normalize.autoscale方法的典型用法代码示例。如果您正苦于以下问题:Python Normalize.autoscale方法的具体用法?Python Normalize.autoscale怎么用?Python Normalize.autoscale使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.colors.Normalize的用法示例。


在下文中一共展示了Normalize.autoscale方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: model_to_pc2

# 需要导入模块: from matplotlib.colors import Normalize [as 别名]
# 或者: from matplotlib.colors.Normalize import autoscale [as 别名]
def model_to_pc2(model, x_start, y_start, resolution, width, height):
    """
    Creates a PointCloud2 by sampling a regular grid of points from the given model.
    """
    pc = PointCloud2()
    pc.header.stamp = rospy.get_rostime()
    pc.header.frame_id = 'map'
 
    xy_points = []
    for x in map_range(x_start, x_start + width, resolution):
        for y in map_range(y_start, y_start + height, resolution):
            xy_points.append([x, y])
    
    probs = model.score_samples(xy_points)
    
    # and normalise to range to make the visualisation prettier
    normaliser = Normalize()
    normaliser.autoscale(probs)
    probs = normaliser(probs)

    colour_map = plt.get_cmap('jet')    
    colours = colour_map(probs, bytes=True)

    cloud = []
    for i in range(len(probs)):
        cloud.append([xy_points[i][0], xy_points[i][1], 2*probs[i], pack_rgb(colours[i][0], colours[i][1], colours[i][2])])
 
    return create_cloud_xyzrgb(pc.header, cloud)
开发者ID:g-gemignani,项目名称:spatio-temporal-cues,代码行数:30,代码来源:support_functions.py

示例2: residual_map_special_deltapsi_add_on

# 需要导入模块: from matplotlib.colors import Normalize [as 别名]
# 或者: from matplotlib.colors.Normalize import autoscale [as 别名]
def residual_map_special_deltapsi_add_on( reflections,experiments,matches,hkllist, predicted,plot,eta_deg,deff ):

        detector = experiments[0].detector
        crystal = experiments[0].crystal
        unit_cell = crystal.get_unit_cell()
        pxlsz = detector[0].get_pixel_size()
        model_millers = reflections["miller_index"]
        dpsi = flex.double()
        for match in matches:

          obs_miller = hkllist[match["pred"]]
          model_index= model_millers.first_index(obs_miller)

          raw_delta_psi = reflections["delpsical.rad"][model_index]
          deltapsi_envelope = (unit_cell.d(obs_miller)/deff) + math.pi*eta_deg/180.
          normalized_delta_psi = raw_delta_psi/deltapsi_envelope

          dpsi.append( normalized_delta_psi )

        from matplotlib.colors import Normalize
        dnorm = Normalize()
        dnorm.autoscale(dpsi.as_numpy_array())

        CMAP = plot.get_cmap("bwr")
        for match,dcolor in zip(matches,dpsi):

          #print dcolor, dnorm(dcolor),  CMAP(dnorm(dcolor))
          #blue represents negative delta psi:  outside Ewald sphere; red, positive, inside Ewald sphere
          plot.plot([predicted[match["pred"]][1]/pxlsz[1]],[-predicted[match["pred"]][0]/pxlsz[0]],color=CMAP(dnorm(dcolor)),
          marker=".", markersize=5)
开发者ID:cctbx,项目名称:cctbx-playground,代码行数:32,代码来源:util.py

示例3: plot

# 需要导入模块: from matplotlib.colors import Normalize [as 别名]
# 或者: from matplotlib.colors.Normalize import autoscale [as 别名]
def plot(d, sphere=False):
    """
    Plot directivity `d`.
    
    :param d: Directivity
    :type d: :class:`Directivity`
    
    :returns: Figure
    """
    
    #phi = np.linspace(-np.pi, +np.pi, 50)
    #theta = np.linspace(0.0, np.pi, 50)
    phi = np.linspace(0.0, +2.0*np.pi, 50)
    theta = np.linspace(0.0, np.pi, 50)
    THETA, PHI = np.meshgrid(theta, phi)
    
    # Directivity strength. Real-valued. Can be positive and negative.
    dr = d.using_spherical(THETA, PHI)
    
    if sphere:
        x, y, z = spherical_to_cartesian(1.0, THETA, PHI)
        
    else:
        x, y, z = spherical_to_cartesian( np.abs(dr), THETA, PHI )
    #R, THETA, PHI = cartesian_to_spherical(x, y, z)
    
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    #p = ax.plot_surface(x, y, z, cmap=plt.cm.jet, rstride=1, cstride=1, linewidth=0)


    norm = Normalize()
    norm.autoscale(dr)
    colors = cm.jet(norm(dr))
    m = cm.ScalarMappable(cmap=cm.jet, norm=norm)
    m.set_array(dr)
    p = ax.plot_surface(x, y, z, facecolors=colors, rstride=1, cstride=1, linewidth=0)
    plt.colorbar(m, ax=ax)
    
    ax.set_xlabel('$x$')
    ax.set_ylabel('$y$')
    ax.set_zlabel('$z$')
    return fig
开发者ID:AlgisLos,项目名称:python-acoustics,代码行数:45,代码来源:directivity.py

示例4: auto_scale_cross_plot

# 需要导入模块: from matplotlib.colors import Normalize [as 别名]
# 或者: from matplotlib.colors.Normalize import autoscale [as 别名]
    def auto_scale_cross_plot(self, event):
        
        norm = Normalize()
        
        for hl in self.h_cross_slice_plot.get_lines(): 
            d = hl.get_ydata()
            norm.autoscale(d)
            hl.set_ydata(norm(d))
          
        for vl in self.v_cross_slice_plot.get_lines(): 
            d = vl.get_ydata()
            norm.autoscale(d)
            vl.set_ydata(norm(d))
        
        
        self.v_cross_slice_plot.relim()
        self.h_cross_slice_plot.relim()
        self.v_cross_slice_plot.autoscale_view(True,True,True)
        self.h_cross_slice_plot.autoscale_view(True,True,True)

        self.cross_slice_canvas.draw()
开发者ID:mark-johnson-1966,项目名称:MDANSE,代码行数:23,代码来源:Plotter2D.py

示例5: plot

# 需要导入模块: from matplotlib.colors import Normalize [as 别名]
# 或者: from matplotlib.colors.Normalize import autoscale [as 别名]
  def plot(self,dano_summation):
    from matplotlib import pyplot as plt

    if self.params.use_weights:
      wt = 1./(self.diffs.sigmas()*self.diffs.sigmas())
      order = flex.sort_permutation(wt)
      wt = wt.select(order)
      df = self.diffs.data().select(order)
      dano = dano_summation.select(self.sel0).select(order)
      from matplotlib.colors import Normalize
      dnorm = Normalize()
      dnorm.autoscale(wt.as_numpy_array())
      CMAP = plt.get_cmap("rainbow")
      for ij in xrange(len(self.diffs.data())):
        #blue represents zero weight:  red, large weight
        plt.plot([df[ij]],[dano[ij]],color=CMAP(dnorm(wt[ij])),marker=".", markersize=4)

    else:
      plt.plot(self.diffs.data(),dano_summation.select(self.sel0),"r,")
    plt.axes().set_aspect("equal")
    plt.axes().set_xlabel("Observed Dano")
    plt.axes().set_ylabel("Model Dano")
    plt.show()
开发者ID:cctbx,项目名称:cctbx-playground,代码行数:25,代码来源:einsle.py

示例6: plot2D

# 需要导入模块: from matplotlib.colors import Normalize [as 别名]
# 或者: from matplotlib.colors.Normalize import autoscale [as 别名]
def plot2D(X, filename=None, last_column_color=False):
    x1 = X[:, 0]
    x2 = X[:, 1]
    m = X.shape[0]
    if last_column_color:
        c = X[:, -1]
        c_map = get_cmap('jet')
        c_norm = Normalize()
        c_norm.autoscale(c)
        scalar_map = ScalarMappable(norm=c_norm, cmap=c_map)
        color_val = scalar_map.to_rgba(c)
    else:
        color_val = 'b' * m
    fig = figure()
    ax = fig.add_subplot(111)
    for i in range(m):
        ax.plot(x1[i], x2[i], 'o', color=color_val[i])
    if filename is None:
        fig.show()
    else:
        fig.savefig(filename + ".png")
    fig.clf()
    close()
开发者ID:CurryBoy,项目名称:ProtoML-Deprecated,代码行数:25,代码来源:mtpltlib.py

示例7: ImagePlot

# 需要导入模块: from matplotlib.colors import Normalize [as 别名]
# 或者: from matplotlib.colors.Normalize import autoscale [as 别名]
def ImagePlot(image):
    if str(image.colorscale)=='n':
        remap = Normalize()
        remap.autoscale(image.data)
        ax.imshow(image.data, cmap='gray', norm=remap, origin='lower')
    elif str(image.colorscale) == 'yg':
        remap = LogNorm()
        remap.autoscale(image.data)
        ax.imshow(image.data, cmap='gray', norm=remap, origin='lower')
    elif str(image.colorscale) == 'ys':
        remap = LogNorm()
        remap.autoscale(image.data)
        ax.imshow(image.data, cmap='seismic', norm=remap, origin='lower')
开发者ID:ebmonson,项目名称:2dfft_utils,代码行数:15,代码来源:spiral_overlay.py

示例8: plot_one_model

# 需要导入模块: from matplotlib.colors import Normalize [as 别名]
# 或者: from matplotlib.colors.Normalize import autoscale [as 别名]
  def plot_one_model(self,nrow,out):
    fig = plt.subplot(self.gs[nrow*self.ncols])
    two_thetas = self.reduction.get_two_theta_deg()
    degrees = self.reduction.get_delta_psi_deg()

    if self.color_encoding=="conventional":
          positive = (self.reduction.i_sigi>=0.)
          fig.plot(two_thetas.select(positive), degrees.select(positive), "bo")
          fig.plot(two_thetas.select(~positive), degrees.select(~positive), "r+")
    elif self.color_encoding=="I/sigma":
          positive = (self.reduction.i_sigi>=0.)
          tt_selected = two_thetas.select(positive)
          dp_selected = degrees.select(positive)
          i_sigi_select = self.reduction.i_sigi.select(positive)
          order = flex.sort_permutation(i_sigi_select)
          tt_selected = tt_selected.select(order)
          dp_selected = dp_selected.select(order)
          i_sigi_selected = i_sigi_select.select(order)
          from matplotlib.colors import Normalize
          dnorm = Normalize()
          dcolors = i_sigi_selected.as_numpy_array()
          dnorm.autoscale(dcolors)
          N = len(dcolors)
          CMAP = plt.get_cmap("rainbow")
          if self.refined.get("partiality_array",None) is None:
            for n in xrange(N):
              fig.plot([tt_selected[n]],[dp_selected[n]],
              color=CMAP(dnorm(dcolors[n])),marker=".", markersize=10)
          else:
            partials = self.refined.get("partiality_array")
            partials_select = partials.select(positive)
            partials_selected = partials_select.select(order)
            assert len(partials)==len(positive)
            for n in xrange(N):
              fig.plot([tt_selected[n]],[dp_selected[n]],
              color=CMAP(dnorm(dcolors[n])),marker=".", markersize=20*partials_selected[n])
              # change the markersize to indicate partiality.
          negative = (self.reduction.i_sigi<0.)
          fig.plot(two_thetas.select(negative), degrees.select(negative), "r+", linewidth=1)
    else:
          strong = (self.reduction.i_sigi>=10.)
          positive = ((~strong) & (self.reduction.i_sigi>=0.))
          negative = (self.reduction.i_sigi<0.)
          assert (strong.count(True)+positive.count(True)+negative.count(True) ==
                  len(self.reduction.i_sigi))
          fig.plot(two_thetas.select(positive), degrees.select(positive), "bo")
          fig.plot(two_thetas.select(strong), degrees.select(strong), marker='.',linestyle='None',
           markerfacecolor='#00ee00', markersize=10)
          fig.plot(two_thetas.select(negative), degrees.select(negative), "r+")

    # indicate the imposed resolution filter
    wavelength = self.reduction.experiment.beam.get_wavelength()
    imposed_res_filter = self.reduction.get_imposed_res_filter(out)
    resolution_markers = [
      a for a in [imposed_res_filter,self.reduction.measurements.d_min()] if a is not None]
    for RM in resolution_markers:
          two_th = (180./math.pi)*2.*math.asin(wavelength/(2.*RM))
          plt.plot([two_th, two_th],[self.AD1TF7B_MAXDP*-0.8,self.AD1TF7B_MAXDP*0.8],'k-')
          plt.text(two_th,self.AD1TF7B_MAXDP*-0.9,"%4.2f"%RM)

    #indicate the linefit
    mean = flex.mean(degrees)
    minplot = flex.min(two_thetas)
    plt.plot([0,minplot],[mean,mean],"k-")
    LR = flex.linear_regression(two_thetas, degrees)
    model_y = LR.slope()*two_thetas + LR.y_intercept()
    plt.plot(two_thetas, model_y, "k-")

    #Now let's take care of the red and green lines.
    half_mosaic_rotation_deg = self.refined["half_mosaic_rotation_deg"]
    mosaic_domain_size_ang = self.refined["mosaic_domain_size_ang"]
    red_curve_domain_size_ang = self.refined.get("red_curve_domain_size_ang",mosaic_domain_size_ang)
    a_step = self.AD1TF7B_MAX2T / 50.
    a_range = flex.double([a_step*x for x in xrange(1,50)]) # domain two-theta array
    #Bragg law [d=L/2sinTH]
    d_spacing = (wavelength/(2.*flex.sin(math.pi*a_range/360.)))
    # convert two_theta to a delta-psi.  Formula for Deffective [Dpsi=d/2Deff]
    inner_phi_deg = flex.asin((d_spacing / (2.*red_curve_domain_size_ang)) )*(180./math.pi)
    outer_phi_deg = flex.asin((d_spacing / (2.*mosaic_domain_size_ang)) + \
      half_mosaic_rotation_deg*math.pi/180. )*(180./math.pi)
    plt.title("ML: mosaicity FW=%4.2f deg, Dsize=%5.0fA on %d spots\n%s"%(
          2.*half_mosaic_rotation_deg, mosaic_domain_size_ang, len(two_thetas),
          os.path.basename(self.reduction.filename)))
    plt.plot(a_range, inner_phi_deg, "r-")
    plt.plot(a_range,-inner_phi_deg, "r-")
    plt.plot(a_range, outer_phi_deg, "g-")
    plt.plot(a_range, -outer_phi_deg, "g-")
    plt.xlim([0,self.AD1TF7B_MAX2T])
    plt.ylim([-self.AD1TF7B_MAXDP,self.AD1TF7B_MAXDP])

    #second plot shows histogram
    fig = plt.subplot(self.gs[1+nrow*self.ncols])
    plt.xlim([-self.AD1TF7B_MAXDP,self.AD1TF7B_MAXDP])
    nbins = 50
    n,bins,patches = plt.hist(dp_selected, nbins,
           range=(-self.AD1TF7B_MAXDP,self.AD1TF7B_MAXDP),
           weights=self.reduction.i_sigi.select(positive),
           normed=0, facecolor="orange", alpha=0.75)
    #ersatz determine the median i_sigi point:
    isi_positive = self.reduction.i_sigi.select(positive)
#.........这里部分代码省略.........
开发者ID:cctbx,项目名称:cctbx-playground,代码行数:103,代码来源:trumpet_plot.py


注:本文中的matplotlib.colors.Normalize.autoscale方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。