本文整理汇总了Python中matplotlib.colors.LightSource.shade方法的典型用法代码示例。如果您正苦于以下问题:Python LightSource.shade方法的具体用法?Python LightSource.shade怎么用?Python LightSource.shade使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.colors.LightSource
的用法示例。
在下文中一共展示了LightSource.shade方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: draw_figure
# 需要导入模块: from matplotlib.colors import LightSource [as 别名]
# 或者: from matplotlib.colors.LightSource import shade [as 别名]
def draw_figure(self):
ls = LightSource(azdeg=315, altdeg=45)
self.surf = self.data
# try to plot the whole array
try:
blended_surface = ls.shade(self.surf, cmap=self.colormap, vert_exag=5, blend_mode=b"overlay",
vmin=np.nanmin(self.surf), vmax=np.nanmax(self.surf))
# too big, two attempts for sub-sampling
except MemoryError:
rows = self.data.shape[0]
cols = self.data.shape[1]
# 1st attempt: <= 1024x1024
try:
max_elements = 1024
row_stride = rows // max_elements + 1
col_stride = cols // max_elements + 1
self.surf = self.data[::row_stride, ::col_stride]
blended_surface = ls.shade(self.surf, cmap=self.colormap, vert_exag=5, blend_mode=b"overlay",
vmin=np.nanmin(self.surf), vmax=np.nanmax(self.surf))
except MemoryError:
# 2st attempt: <= 512x512
max_elements = 512
row_stride = rows // max_elements + 1
col_stride = cols // max_elements + 1
self.surf = self.data[::row_stride, ::col_stride]
blended_surface = ls.shade(self.surf, cmap=self.colormap, vert_exag=5, blend_mode=b"overlay",
vmin=np.nanmin(self.surf), vmax=np.nanmax(self.surf))
log.debug("too big: %s x %s > subsampled to %s x %s"
% (self.data.shape[0], self.data.shape[1], self.surf.shape[0], self.surf.shape[1]))
self.axes.coastlines(resolution='50m', color='gray', linewidth=1)
img = self.axes.imshow(blended_surface, origin='lower', cmap=self.colormap,
extent=self.geo_extent, transform=ccrs.PlateCarree())
img.set_clim(vmin=np.nanmin(self.surf), vmax=np.nanmax(self.surf))
# add gridlines with labels only on the left and on the bottom
grl = self.axes.gridlines(crs=ccrs.PlateCarree(), color='gray', draw_labels=True)
grl.xformatter = LONGITUDE_FORMATTER
grl.yformatter = LATITUDE_FORMATTER
grl.xlabel_style = {'size': 8}
grl.ylabel_style = {'size': 8}
grl.ylabels_right = False
grl.xlabels_top = False
if self.cb:
self.cb.on_mappable_changed(img)
else:
self.cb = plt.colorbar(img, ax=self.axes)
self.cb.ax.tick_params(labelsize=8)
示例2: SurfPlot
# 需要导入模块: from matplotlib.colors import LightSource [as 别名]
# 或者: from matplotlib.colors.LightSource import shade [as 别名]
def SurfPlot(data):
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cbook
from matplotlib import cm
from matplotlib.colors import LightSource
import matplotlib.pyplot as plt
import numpy as np
ncols, nrows = data.shape
if ncols * nrows > 20000: print 'Warning, surface plotting things of this size is slow...'
z = data
x = np.linspace(0, ncols, ncols)
y = np.linspace(0, nrows, nrows)
x, y = np.meshgrid(x, y)
region = np.s_[0:min(ncols,nrows), 0:min(ncols,nrows)]
x, y, z = x[region], y[region], z[region]
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'), figsize=(10,10))
ls = LightSource(270, 45)
# To use a custom hillshading mode, override the built-in shading and pass
# in the rgb colors of the shaded surface calculated from "shade".
rgb = ls.shade(z, cmap=cm.CMRmap, vert_exag=0.01, blend_mode='soft')
surf = ax.plot_surface(x, y, z, rstride=1, cstride=1, facecolors=rgb, linewidth=0, antialiased=True, shade=False)
plt.show()
示例3: test_light_source_shading_color_range
# 需要导入模块: from matplotlib.colors import LightSource [as 别名]
# 或者: from matplotlib.colors.LightSource import shade [as 别名]
def test_light_source_shading_color_range():
# see also
#http://matplotlib.org/examples/pylab_examples/shading_example.html
from matplotlib.colors import LightSource
from matplotlib.colors import Normalize
refinput = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
norm = Normalize(vmin=0, vmax=50)
ls = LightSource(azdeg=0, altdeg=65)
testoutput = ls.shade(refinput, plt.cm.jet, norm=norm)
refoutput = np.array([
[[0., 0., 0.58912656, 1.],
[0., 0., 0.67825312, 1.],
[0., 0., 0.76737968, 1.],
[0., 0., 0.85650624, 1.]],
[[0., 0., 0.9456328, 1.],
[0., 0., 1., 1.],
[0., 0.04901961, 1., 1.],
[0., 0.12745098, 1., 1.]],
[[0., 0.22156863, 1., 1.],
[0., 0.3, 1., 1.],
[0., 0.37843137, 1., 1.],
[0., 0.45686275, 1., 1.]]
])
assert_array_almost_equal(refoutput, testoutput)
示例4: plot_shaded
# 需要导入模块: from matplotlib.colors import LightSource [as 别名]
# 或者: from matplotlib.colors.LightSource import shade [as 别名]
def plot_shaded(self, cmap=plt.cm.terrain, lightsource_kwargs=None, *args, **kwargs):
if lightsource_kwargs is None:
lightsource_kwargs = {'azdeg':225, 'altdeg':5}
extent = [self.x.min(), self.x.max(), self.y.min(), self.y.max()]
arr = self.z.copy()
nan_mask = np.isnan(arr)
arr_min = arr[~nan_mask].min()
if nan_mask.any():
arr[nan_mask] = max(arr_min-10, 0)
ls = LightSource(**lightsource_kwargs)
shaded = ls.shade(arr, cmap=cmap)
fig = plt.figure()
ax = fig.add_subplot(111)
im = ax.imshow(shaded, cmap=cmap, extent=extent, *args, **kwargs)
plt.colorbar(im)
ax.get_xaxis().get_major_formatter().set_useOffset(False)
ax.get_yaxis().get_major_formatter().set_useOffset(False)
plt.show()
示例5: main
# 需要导入模块: from matplotlib.colors import LightSource [as 别名]
# 或者: from matplotlib.colors.LightSource import shade [as 别名]
def main():
fig, ax = plt.subplots(3, 2, figsize=(7, 10))
fig.tight_layout()
if 1:
# Same terrain and data.
data = make_test_data('circles', noise_factor=0.05) * 2 - 7
terrain = data
else:
# Different terrain and data. Matplotlib hill shading can only show the data.
data = make_test_data('hills') * -1
terrain = make_test_data('circles', noise_factor=0.05) * 2
assert terrain.shape == data.shape, "{} != {}".format(terrain.shape, data.shape)
print("data range: {} {}".format(np.min(data), np.max(data)))
if len(sys.argv) > 1:
cmap_name = sys.argv[1]
else:
#cmap_name = 'copper' # from http://matplotlib.org/examples/pylab_examples/shading_example.html?highlight=codex%20shade
#cmap_name = 'gist_earth' # works reasonably fine with all of them
cmap_name = 'bwr' # shows that mpl & pegtop don't work when there is no increasing intensity
#cmap_name = 'cubehelix' # shows that HSV blending does not work were color is black
#cmap_name = 'rainbow' # shows that mpl & pegtop don't work when there is no increasing intensity
#cmap_name = 'Paired_r' # is nice to inspect when the data is different from the terrain
print ("Using colormap: {!r}".format(cmap_name))
cmap = plt.cm.get_cmap(cmap_name)
cmap.set_bad('cyan')
cmap.set_over('cyan')
cmap.set_under('cyan')
abs_max = np.max(np.abs(data)) # force color bar to be symmetrical.
norm = mpl.colors.Normalize(vmin=-abs_max, vmax=abs_max)
#norm = mpl.colors.Normalize(vmin=-2, vmax=3)
draw(ax[0, 0], cmap=cmap, norm=norm, title='No shading',
image_data = data)
draw(ax[0, 1], cmap=plt.cm.gray, title='Matplotlib intensity',
image_data = mpl_surface_intensity(terrain))
ls = LightSource(azdeg=DEF_AZIMUTH, altdeg=DEF_ELEVATION)
draw(ax[1, 0], cmap=cmap, norm=norm, title='Matplotlib hill shading',
image_data = ls.shade(data, cmap=cmap, norm=norm))
draw(ax[1, 1], cmap=cmap, norm=norm, title='Pegtop blending',
image_data = mpl_hill_shade(data, terrain=terrain,
cmap=cmap, norm=norm, blend_function=pegtop_blending))
draw(ax[2, 0], cmap=cmap, norm=norm, title='RGB blending',
image_data = mpl_hill_shade(data, terrain=terrain,
cmap=cmap, norm=norm, blend_function=rgb_blending))
draw(ax[2, 1], cmap=cmap, norm=norm, title='HSV blending',
image_data = mpl_hill_shade(data, terrain=terrain,
cmap=cmap, norm=norm, blend_function=hsv_blending))
plt.show()
示例6: background_map
# 需要导入模块: from matplotlib.colors import LightSource [as 别名]
# 或者: from matplotlib.colors.LightSource import shade [as 别名]
def background_map(self, ax):
llcrnrlat, urcrnrlat, llcrnrlon, urcrnrlon, lat_ts = (31, 44, -126, -113, 37.5)
m = Basemap(projection='merc', llcrnrlat=llcrnrlat,
urcrnrlat=urcrnrlat, llcrnrlon=llcrnrlon, urcrnrlon=urcrnrlon,
lat_ts=lat_ts, resolution='i', ax=ax)
m.drawmapboundary(fill_color='lightblue', zorder=0)
m.fillcontinents(zorder=0)
etopofn = '/home/behry/uni/data/etopo1_central_europe_gmt.grd'
etopodata = Dataset(etopofn, 'r')
z = etopodata.variables['z'][:]
x_range = etopodata.variables['x_range'][:]
y_range = etopodata.variables['y_range'][:]
spc = etopodata.variables['spacing'][:]
lats = np.arange(y_range[0], y_range[1], spc[1])
lons = np.arange(x_range[0], x_range[1], spc[0])
topoin = z.reshape(lats.size, lons.size, order='C')
# transform to nx x ny regularly spaced 5km native projection grid
nx = int((m.xmax - m.xmin) / 5000.) + 1; ny = int((m.ymax - m.ymin) / 5000.) + 1
topodat, x, y = m.transform_scalar(np.flipud(topoin), lons, lats, nx, ny, returnxy=True)
ls = LightSource(azdeg=300, altdeg=15, hsv_min_sat=0.2, hsv_max_sat=0.3,
hsv_min_val=0.2, hsv_max_val=0.3)
# shade data, creating an rgb array.
rgb = ls.shade(np.ma.masked_less(topodat / 1000.0, 0.0), cm.gist_gray_r)
m.imshow(rgb)
m.drawmeridians(np.arange(6, 12, 2), labels=[0, 0, 0, 1], color='white',
linewidth=0.5, zorder=0)
m.drawparallels(np.arange(44, 50, 2), labels=[1, 0, 0, 0], color='white',
linewidth=0.5, zorder=0)
m.drawcoastlines(zorder=1)
m.drawcountries(linewidth=1.5, zorder=1)
m.drawstates()
m.drawrivers(color='lightblue', zorder=1)
return m
示例7: apply
# 需要导入模块: from matplotlib.colors import LightSource [as 别名]
# 或者: from matplotlib.colors.LightSource import shade [as 别名]
def apply(self):
from mpl_toolkits.basemap import shiftgrid, cm
common.ShowQuestion
display = self.VpyartDisplay.value
if (isinstance(display, pyart.graph.RadarMapDisplay) or
isinstance(display, pyart.graph.GridMapDisplay)):
pass
elif (isinstance(display, pyart.graph.RadarDisplay) or
isinstance(display, pyart.graph.AirborneRadarDisplay)):
common.ShowWarning(
"Topography require a MapDisplay, be sure to "
"check the 'use MapDisplay' box in the 'Display Options' Menu")
return
else:
common.ShowWarning(
"Need a pyart display instance, be sure to "
"link this components (%s), to a radar or grid display" %
self.name)
return
filename = str(self.lineEdit.text())
if filename != self.current_open:
if filename.startswith("http"):
resp = common.ShowQuestion(
"Loading a file from the internet may take long." +
" Are you sure you want to continue?")
if resp != QtWidgets.QMessageBox.Ok:
return
self.etopodata = Dataset(filename)
self.current_open = filename
topoin = np.maximum(0, self.etopodata.variables['ROSE'][:])
lons = self.etopodata.variables['ETOPO05_X'][:]
lats = self.etopodata.variables['ETOPO05_Y'][:]
# shift data so lons go from -180 to 180 instead of 20 to 380.
topoin, lons = shiftgrid(180., topoin, lons, start=False)
# plot topography/bathymetry as an image.
# create the figure and axes instances.
# setup of basemap ('lcc' = lambert conformal conic).
# use major and minor sphere radii from WGS84 ellipsoid.
m = self.VpyartDisplay.value.basemap
# transform to nx x ny regularly spaced 5km native projection grid
nx = int((m.xmax - m.xmin)/500.) + 1
ny = int((m.ymax - m.ymin)/500.) + 1
topodat = m.transform_scalar(topoin, lons, lats, nx, ny)
# plot image over map with imshow.
# draw coastlines and political boundaries.
ls = LightSource(azdeg=90, altdeg=20)
# convert data to rgb array including shading from light source.
# (must specify color map)
rgb = ls.shade(topodat, cm.GMT_relief)
im = m.imshow(rgb)
self.VpyartDisplay.update(strong=False)
示例8: avoid_outliers
# 需要导入模块: from matplotlib.colors import LightSource [as 别名]
# 或者: from matplotlib.colors.LightSource import shade [as 别名]
def avoid_outliers():
"""Use a custom norm to control the displayed z-range of a shaded plot."""
y, x = np.mgrid[-4:2:200j, -4:2:200j]
z = 10 * np.cos(x**2 + y**2)
# Add some outliers...
z[100, 105] = 2000
z[120, 110] = -9000
ls = LightSource(315, 45)
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4.5))
rgb = ls.shade(z, plt.cm.copper)
ax1.imshow(rgb)
ax1.set_title('Full range of data')
rgb = ls.shade(z, plt.cm.copper, vmin=-10, vmax=10)
ax2.imshow(rgb)
ax2.set_title('Manually set range')
fig.suptitle('Avoiding Outliers in Shaded Plots', size='x-large')
示例9: plotRainbow
# 需要导入模块: from matplotlib.colors import LightSource [as 别名]
# 或者: from matplotlib.colors.LightSource import shade [as 别名]
def plotRainbow(self):
self.setUp()
ls = LightSource(270, 45)
# To use a custom hillshading mode, override the built-in shading and pass
# in the rgb colors of the shaded surface calculated from "shade".
rgb = ls.shade(self.Z, cmap=cm.gist_earth, vert_exag=0.1, blend_mode='soft')
self.ax.plot_surface(self.X, self.Y, self.Z, facecolors=rgb)
self.setLabels()
plt.show()
示例10: getTopoRGB
# 需要导入模块: from matplotlib.colors import LightSource [as 别名]
# 或者: from matplotlib.colors.LightSource import shade [as 别名]
def getTopoRGB(topogrid):
topotmp = topogrid.getData().copy()
# make a masked array
topotmp = np.ma.array(topotmp)
topodat = np.ma.masked_where(np.isnan(topotmp), topotmp)
cy = topogrid.geodict["ymin"] + (topogrid.geodict["ymax"] - topogrid.geodict["ymin"]) / 2.0
# flag the regions where topography is less than 0 (we'll color this ocean later)
i = np.where(topodat == SEA_LEVEL)
# do shaded relief stuff
# keys are latitude values
# values are multiplication factor
zdict = {
0: 0.00000898,
10: 0.00000912,
20: 0.00000956,
30: 0.00001036,
40: 0.00001171,
50: 0.00001395,
60: 0.00001792,
70: 0.00002619,
80: 0.00005156,
}
# find the mean latitude of the map we're making, and use that to come up with a zfactor
mlat = abs(int(round(cy / 10) * 10))
zfactor = zdict[mlat]
ls = LightSource(azdeg=AZDEFAULT, altdeg=ALTDEFAULT)
# draw the ocean in light blue
water_color = [0.47, 0.60, 0.81]
palette1 = copy.deepcopy(cm.binary)
# draw the light shaded-topography
rgbdata = topodat * zfactor # apply the latitude specific zfactor correction
rgb = ls.shade(rgbdata, cmap=palette1) # apply the light shading to our corrected topography
# this is an rgb data set now, so masking the pixels won't work, but explicitly setting all of the
# "bad" pixels to our water color will
red = rgb[:, :, 0]
green = rgb[:, :, 1]
blue = rgb[:, :, 2]
red[i] = water_color[0]
green[i] = water_color[1]
blue[i] = water_color[2]
rgb[:, :, 0] = red
rgb[:, :, 1] = green
rgb[:, :, 2] = blue
rgb = np.flipud(rgb)
return (rgb, palette1)
示例11: compare
# 需要导入模块: from matplotlib.colors import LightSource [as 别名]
# 或者: from matplotlib.colors.LightSource import shade [as 别名]
def compare(z, cmap, ve=1):
# Create subplots and hide ticks
fig, axes = plt.subplots(ncols=2, nrows=2)
for ax in axes.flat:
ax.set(xticks=[], yticks=[])
# Illuminate the scene from the northwest
ls = LightSource(azdeg=315, altdeg=45)
axes[0, 0].imshow(z, cmap=cmap)
axes[0, 0].set(xlabel='Colormapped Data')
axes[0, 1].imshow(ls.hillshade(z, vert_exag=ve), cmap='gray')
axes[0, 1].set(xlabel='Illumination Intensity')
rgb = ls.shade(z, cmap=cmap, vert_exag=ve, blend_mode='hsv')
axes[1, 0].imshow(rgb)
axes[1, 0].set(xlabel='Blend Mode: "hsv" (default)')
rgb = ls.shade(z, cmap=cmap, vert_exag=ve, blend_mode='overlay')
axes[1, 1].imshow(rgb)
axes[1, 1].set(xlabel='Blend Mode: "overlay"')
return fig
示例12: display_depth_matplotlib
# 需要导入模块: from matplotlib.colors import LightSource [as 别名]
# 或者: from matplotlib.colors.LightSource import shade [as 别名]
def display_depth_matplotlib(z):
"""
Same as above but using matplotlib instead.
"""
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.colors import LightSource
m, n = z.shape
x, y = np.mgrid[0:m, 0:n]
fig = plt.figure()
ax = fig.gca(projection='3d')
ls = LightSource(azdeg=0, altdeg=65)
greyvals = ls.shade(z, plt.cm.Greys)
ax.plot_surface(x, y, z, rstride=1, cstride=1, linewidth=0, antialiased=False, facecolors=greyvals)
plt.axis('off')
plt.axis('equal')
plt.show()
示例13: display_colorbar
# 需要导入模块: from matplotlib.colors import LightSource [as 别名]
# 或者: from matplotlib.colors.LightSource import shade [as 别名]
def display_colorbar():
"""Display a correct numeric colorbar for a shaded plot."""
y, x = np.mgrid[-4:2:200j, -4:2:200j]
z = 10 * np.cos(x**2 + y**2)
cmap = plt.cm.copper
ls = LightSource(315, 45)
rgb = ls.shade(z, cmap)
fig, ax = plt.subplots()
ax.imshow(rgb)
# Use a proxy artist for the colorbar...
im = ax.imshow(z, cmap=cmap)
im.remove()
fig.colorbar(im)
ax.set_title('Using a colorbar with a shaded plot', size='x-large')
示例14: main3
# 需要导入模块: from matplotlib.colors import LightSource [as 别名]
# 或者: from matplotlib.colors.LightSource import shade [as 别名]
def main3():
ax = plt.axes(projection=ccrs.PlateCarree())
elev, crs, extent = io_srtm.srtm_composite(-5, 52, 2, 2)
elev = np.ma.masked_less_equal(elev, 0, copy=False)
use_mpl_light_source = False
if use_mpl_light_source:
from matplotlib.colors import LightSource
ls = LightSource(azdeg=90, altdeg=80,
hsv_min_val=0.6, hsv_min_sat=0.9,
hsv_max_val=0.8, hsv_max_sat=1,
)
rgb = ls.shade(elev, plt.get_cmap('Greens', 3))
else:
import matplotlib.colors as mcolors
rgb = set_shade(elev,
cmap=mcolors.ListedColormap([plt.get_cmap('Greens', 3)(0.5)])
)
ax.imshow(rgb,
extent=extent,
transform=crs
)
x = np.linspace(extent[0], extent[1], elev.shape[0])
y = np.linspace(extent[2], extent[3], elev.shape[1])
#
# ax.contour(x, y, elev, 100,
# linestyles='-',
# colors='blue',
# linewidths=0.3,
# alpha=0.4,
# transform=crs,
# )
plt.show()
示例15: mapwithtopo
# 需要导入模块: from matplotlib.colors import LightSource [as 别名]
# 或者: from matplotlib.colors.LightSource import shade [as 别名]
def mapwithtopo(p,ax=[],cutdepth=[],aspect=2.5,cmap=[],dlon=30,dlat=10,smooth=False):
import popy,os
from netCDF4 import Dataset
from mpl_toolkits.basemap import shiftgrid
from matplotlib.colors import LightSource
import pylab as plt
import numpy as np
etopofn='/net/mazdata2/jinbo/mdata5-jinbo/obs/ETOPO/ETOPO1_Bed_g_gmt4.grd'
etopo = Dataset(etopofn,'r').variables
x,y,z=etopo['x'][1:],etopo['y'][1:],etopo['z'][1:,1:]
dx,dy=5,5
x=x.reshape(-1,dx).mean(axis=-1)
y=y.reshape(-1,dx).mean(axis=-1)
z=z.reshape(y.size,dx,x.size,dx).mean(axis=-1).mean(axis=1)
if smooth:
z=popy.utils.smooth2d(z,window_len=3)
if cutdepth!=[]:
z[z<cutdepth]=cutdepth
if ax==[]:
fig=plt.figure()
ax=fig.add_subplot()
if cmap==[]:
cmap=plt.cm.Greys
z,x = shiftgrid(p[0],z,x,start=True)
lon,lat,z = popy.utils.subtractsubdomain(x,y,p,z)
m = setmap(p=p,dlon=dlon,dlat=dlat)
x, y = m(*np.meshgrid(lon, lat))
ls = LightSource(azdeg=90, altdeg=45)
rgb = ls.shade(z, cmap=cmap)
m.imshow(rgb, aspect=aspect)
plt.savefig('/tmp/tmp.png')
os.popen('eog /tmp/tmp.png')
return etopo