当前位置: 首页>>代码示例>>Python>>正文


Python colors.normalize函数代码示例

本文整理汇总了Python中matplotlib.colors.normalize函数的典型用法代码示例。如果您正苦于以下问题:Python normalize函数的具体用法?Python normalize怎么用?Python normalize使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了normalize函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_maps

def plot_maps(plot_params, anat_fn, anat_slice_def, fig_dir,
              orientation=['axial','sagittal'], crop_extension=None,
              plot_anat=True, plot_fontsize=25, fig_dpi=75):

    ldata = []
    for p in plot_params:
        c = xndarray.load(p['fn']).sub_cuboid(**p['slice_def'])
        c.set_orientation(orientation)
        ldata.append(c.data)

    c_anat = xndarray.load(anat_fn).sub_cuboid(**anat_slice_def)
    c_anat.set_orientation(orientation)

    resolution = c_anat.meta_data[1]['pixdim'][1:4]
    slice_resolution = resolution[MRI4Daxes.index(orientation[0])], \
      resolution[MRI4Daxes.index(orientation[1])]

    all_data = np.array(ldata)

    if 'prl' in plot_params[0]['fn']:
        norm = normalize(all_data.min(), all_data.max()*1.05)
        print 'norm:', (all_data.min(), all_data.max())
    else:
        norm = normalize(all_data.min(), all_data.max())

    print 'norm:', (all_data.min(), all_data.max())
    for data, plot_param in zip(all_data, plot_params):
        fn = plot_param['fn']
        plt.figure()
        print 'fn:', fn
        print '->', (data.min(), data.max())
        if plot_anat:
            anat_data = c_anat.data
        else:
            anat_data = None
        plot_func_slice(data, anatomy=anat_data,
                        parcellation=plot_param.get('mask'),
                        func_cmap=cmap,
                        parcels_line_width=1., func_norm=norm,
                        resolution=slice_resolution,
                        crop_extension=crop_extension)
        set_ticks_fontsize(plot_fontsize)

        fig_fn = op.join(fig_dir, '%s.png' %op.splitext(op.basename(fn))[0])
        output_fig_fn = plot_param.get('output_fig_fn', fig_fn)

        print 'Save to: %s' %output_fig_fn
        plt.savefig(output_fig_fn, dpi=fig_dpi)
        autocrop(output_fig_fn)
    return norm
开发者ID:ainafp,项目名称:pyhrf,代码行数:50,代码来源:real_data_jde_rfir_glm.py

示例2: __init__

  def __init__( self, data, ax, prefs, *args, **kw ):

    PlotBase.__init__( self, data, ax, prefs, *args, **kw )
    if type( data ) == types.DictType:
      self.gdata = GraphData( data )
    elif type( data ) == types.InstanceType and data.__class__ == GraphData:
      self.gdata = data
    if self.prefs.has_key( 'span' ):
      self.width = self.prefs['span']
    else:
      self.width = 1.0
      if self.gdata.key_type == "time":
        nKeys = self.gdata.getNumberOfKeys()
        self.width = ( max( self.gdata.all_keys ) - min( self.gdata.all_keys ) ) / nKeys

    # Setup the colormapper to get the right colors
    self.cmap = LinearSegmentedColormap( 'quality_colormap', cdict, 256 )
    #self.cmap = cm.RdYlGn
    self.norms = normalize( 0, 100 )
    mapper = cm.ScalarMappable( cmap = self.cmap, norm = self.norms )
    mapper = cm.ScalarMappable( cmap = cm.RdYlGn, norm = self.norms )
    def get_alpha( *args, **kw ):
      return 1.0
    mapper.get_alpha = get_alpha
    self.mapper = mapper
开发者ID:sbel,项目名称:bes3-jinr,代码行数:25,代码来源:QualityMapGraph.py

示例3: colorify

def colorify(data, vmin=None, vmax=None, cmap=plt.cm.Spectral):
    """ Associate a color map to a quantity vector

    Parameters
    ----------
    data: sequence
        values to index

    vmin: float, optional
        minimal value to index

    vmax: float, optional
        maximal value to index

    cmap: colormap instance
        colormap to use

    Returns
    -------
    colors: sequence
        color sequence corresponding to data

    scalarMap: colormap
        generated map
    """
    import matplotlib.colors as colors

    _vmin = vmin or min(data)
    _vmax = vmax or max(data)
    cNorm = colors.normalize(vmin=_vmin, vmax=_vmax)

    scalarMap = plt.cm.ScalarMappable(norm=cNorm, cmap=cmap)
    colors = map(scalarMap.to_rgba, data)
    return colors, scalarMap
开发者ID:philrosenfield,项目名称:ResolvedStellarPops,代码行数:34,代码来源:plotting.py

示例4: __init__

    def __init__(self, cmapName="hsv", indexMin=0, indexMax=1):
        """
        cmapName: color map name
        indexMin, indexMax: mininal and maximal value of index used
                            used for normalization
        """

        #self.cmap = cm.cmap_d[cmapName] # color map instance
        self.cmap = cm.get_cmap(cmapName) # color map instance
        self.norm = colors.normalize(indexMin, indexMax) # normalize instance
开发者ID:gizela,项目名称:gizela,代码行数:10,代码来源:ColorMap.py

示例5: pproc

def pproc(filename, inArray, dir, max_value, padding, show_plot):
    array = dirArray(inArray[0], dir)
    #with open('1.dat', 'w') as f:
    #    for item in xArray:    
    #        f.write(str(item))
    mat = FilterMap(max_value, padding)
    mat.filter(array)
    #plt.imshow(mat.result)
    
    maxV =  max(map(max, mat.result))
    minV =  min(map(min, mat.result))
    if (maxV**2 > minV**2): mv = np.sqrt(maxV**2)
    else: mv = np.sqrt(minV**2)

    print "max value of field: ", mv
    print "half of max value of field: ", mv/2
    
    # ['Spectral', 'summer', 'RdBu', 'Set1', 'Set2', 'Set3', 'brg_r', 'Dark2', 
    # 'hot', 'PuOr_r', 'afmhot_r', 'terrain_r', 'PuBuGn_r', 'RdPu', 'gist_ncar_r', 
    # 'gist_yarg_r', 'Dark2_r', 'YlGnBu', 'RdYlBu', 'hot_r', 'gist_rainbow_r', 
    # 'gist_stern', 'gnuplot_r', 'cool_r', 'cool', 'gray', 'copper_r', 'Greens_r', 
    # 'GnBu', 'gist_ncar', 'spring_r', 'gist_rainbow', 'RdYlBu_r', 'gist_heat_r', 
    # 'OrRd_r', 'bone', 'gist_stern_r', 'RdYlGn', 'Pastel2_r', 'spring', 'terrain', 
    # 'YlOrRd_r', 'Set2_r', 'winter_r', 'PuBu', 'RdGy_r', 'spectral', 'flag_r', 
    # 'jet_r', 'RdPu_r', 'Purples_r', 'gist_yarg', 'BuGn', 'Paired_r', 'hsv_r', 'bwr', 
    # 'YlOrRd', 'Greens', 'PRGn', 'gist_heat', 'spectral_r', 'Paired', 'hsv', 'Oranges_r', 
    # 'prism_r', 'Pastel2', 'Pastel1_r', 'Pastel1', 'gray_r', 'PuRd_r', 'Spectral_r', 
    # 'gnuplot2_r', 'BuPu', 'YlGnBu_r', 'copper', 'gist_earth_r', 'Set3_r', 'OrRd', 
    # 'PuBu_r', 'ocean_r', 'brg', 'gnuplot2', 'jet', 'bone_r', 'gist_earth', 'Oranges', 
    # 'RdYlGn_r', 'PiYG', 'YlGn', 'binary_r', 'gist_gray_r', 'Accent', 'BuPu_r', 'gist_gray', 
    # 'flag', 'seismic_r', 'RdBu_r', 'BrBG', 'Reds', 'BuGn_r', 'summer_r', 'GnBu_r', 'BrBG_r', 
    # 'Reds_r', 'RdGy', 'PuRd', 'Accent_r', 'Blues', 'Greys', 'autumn', 'PRGn_r', 'Greys_r', 
    # 'pink', 'binary', 'winter', 'gnuplot', 'pink_r', 'prism', 'YlOrBr', 'rainbow_r', 'rainbow', 
    # 'PiYG_r', 'YlGn_r', 'Blues_r', 'YlOrBr_r', 'seismic', 'Purples', 'bwr_r', 'autumn_r', 
    # 'ocean', 'Set1_r', 'PuOr', 'PuBuGn', 'afmhot']
    # norm = colors.normalize(-mv, mv)
    # MUMAX
    norm = colors.normalize(-1, 1)
    # norm = colors.LogNorm()
    # plt.matshow(mat.result, cmap='RdBu', norm=colors.LogNorm() )
    plt.matshow(mat.result, norm=norm )
    plt.colorbar(shrink=.8)
    fig = plt.gcf()
    if (show_plot==True): plt.show()
    png_name = filename[0:(len(filename)-4)] + "_" "+.png"
    a = re.split(r'\\', png_name)
    addr = ""
    for i in range(len(a)-1):
        addr += a[i] +"\\"
    print addr
    addr += (dir+"_"+a[ len(a)-1 ])
    print addr
    #addr =  nn
    fig.savefig(addr, dpi=100)
    plt.close()
开发者ID:pgru,项目名称:scripts,代码行数:55,代码来源:process_mumax.py

示例6: make_mpl_image_properties

def make_mpl_image_properties(func_man):
    """ Create a dictionary of matplotlib AxesImage color mapping
    properties from the corresponding properties in an OverlayInterface 
    """
    from matplotlib.colors import normalize
    props = dict()
    props['cmap'] = func_man.colormap
    props['interpolation'] = func_man.interpolation
    props['alpha'] = func_man.alpha()
    props['norm'] = normalize(*func_man.norm)
    return props
开发者ID:cindeem,项目名称:xipy,代码行数:11,代码来源:interface.py

示例7: colorify

def colorify(data, vmin=None, vmax=None, cmap=plt.cm.Spectral):
    """ Associate a color map to a quantity vector """
    import matplotlib.colors as colors

    _vmin = vmin or min(data)
    _vmax = vmax or max(data)
    cNorm = colors.normalize(vmin=_vmin, vmax=_vmax)

    scalarMap = plt.cm.ScalarMappable(norm=cNorm, cmap=cmap)
    colors = map(scalarMap.to_rgba, data)
    return colors, scalarMap
开发者ID:mfouesneau,项目名称:faststats,代码行数:11,代码来源:figrc.py

示例8: __init__

    def __init__(self, cmapName="hsv", indexMin=0, indexMax=1):
        """
        cmapName: color map name
        indexMin, indexMax: mininal and maximal value of index used
                            used for normalization
        """

        self.cmap = cm.cmap_d[cmapName] # color map instance
        self.norm = colors.normalize(indexMin, indexMax) # normalize instance
        
        self.set_color(indexMin) # implicit setting of point color
开发者ID:gizela,项目名称:gizela,代码行数:11,代码来源:PointStyleColorMap.py

示例9: _draw_features

 def _draw_features(self, **kwargs):
     xoffset = kwargs.get('xoffset',0)
     for feat_numb, feat2draw in enumerate(self.features):
         if feat2draw.color_by_cm:
             if feat2draw.use_score_for_color:
                 feat2draw.cm_value = feat2draw.score
                 feat2draw.fc = self.cm(feat2draw.cm_value)
             else:# color by feature number
                 if not feat2draw.cm_value:
                     self.norm = colors.normalize(1,len(self.features)+1,)
                     feat2draw.cm_value = feat_numb +1
                 feat2draw.fc = self.cm(self.norm(feat2draw.cm_value))
         feat2draw.draw_feature()
         feat2draw.draw_feat_name(xoffset = xoffset)
开发者ID:apierleoni,项目名称:BioGraPy,代码行数:14,代码来源:tracks.py

示例10: add_data

    def add_data(self, data):
        """
        Adiciona serie temporal para UFs [(UF,tempo,valor),...]
        """
        vals = array([i[2] for i in data])
        norm = normalize(vals.min(), vals.max()) 
        for i, d in enumerate(data):
            print i
            pm = self.pmdict[d[0]]
            #clone placemark to receive new data
            pm_newtime = pm.cloneNode(1)
            # Renaming placemark
            on = pm_newtime.getElementsByTagName('name')[0]
            nn = self.kmlDoc.createElement('name')
            nn.appendChild(self.kmlDoc.createTextNode(d[0]+'-'+str(d[1])))
            pm_newtime.replaceChild(nn, on)
            nl = pm_newtime.childNodes
            #extrude polygon
            pol = pm_newtime.getElementsByTagName('Polygon')[0]
            alt = self.kmlDoc.createElement('altitudeMode')
            alt.appendChild(self.kmlDoc.createTextNode('relativeToGround'))
            ex = self.kmlDoc.createElement('extrude')
            ex.appendChild(self.kmlDoc.createTextNode('1'))
            ts = self.kmlDoc.createElement('tessellate')
            ts.appendChild(self.kmlDoc.createTextNode('1'))
            pol.appendChild(alt)
            pol.appendChild(ex)
            pol.appendChild(ts)
            lr = pm_newtime.getElementsByTagName('LinearRing')[0]
            nlr = self.extrude_polygon(lr, d[2])
            ob = pm_newtime.getElementsByTagName('outerBoundaryIs')[0]
#            ob.replaceChild(nlr, lr)
            ob.removeChild(lr)
            ob.appendChild(nlr)
            #set polygon style
            col = rgb2hex(cm.Oranges(norm(d[2]))[:3])+'ff'
            st = pm_newtime.getElementsByTagName('Style')[0] #style
            nst = self.set_polygon_style(st, col)
            pm_newtime.removeChild(st)
            pm_newtime.appendChild(nst)
            
            #add timestamp
            ts = self.kmlDoc.createElement('TimeStamp')
            w = self.kmlDoc.createElement('when')
            w.appendChild(self.kmlDoc.createTextNode(str(d[1])))
            ts.appendChild(w)
            pm_newtime.appendChild(ts)
            self.folder.appendChild(pm_newtime)
        for pm in self.pmdict.itervalues():
            self.folder.removeChild(pm)
开发者ID:Ralpbezerra,项目名称:Supremo,代码行数:50,代码来源:kmlgen.py

示例11: plot_sensor_data

def plot_sensor_data(sensor, plot_type="grey", outfile="output.png"):

    # Create canvas
    print "Preparing the plot"
    fig = plt.figure()

    if (plot_type == "3d"):
        ax = fig.add_subplot(111, projection='3d')

        # Calculate 3d plot data: grid
        xedges = np.arange(0, s.pixel_rows+1)
        yedges = np.arange(0, s.pixel_columns+1)
        elements = (len(xedges) - 1) * (len(yedges) - 1)
        xpos, ypos = np.meshgrid(xedges[:-1]+0.05, yedges[:-1]+0.05)

        # Calculate starting x, y, z
        xpos = xpos.flatten()
        ypos = ypos.flatten()
        zpos = np.zeros(elements)
        # Areas of the bins, flatten the heights
        dx = 0.9 * np.ones_like(zpos)
        dy = dx.copy()
        dz = np.array(s.data()).flatten()

        print "Calculating colors..."
        norm = colors.normalize(dz.min(), dz.max())
        col = []
        for i in dz:
            col.append(cm.jet(norm(i)))

        print "Now rendering image..."
        ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color=col, zsort='average')
    else:
        ax = fig.add_subplot(111)
        dz = np.array(s.data()).flatten()

        cma = cm.jet
        if (plot_type == "grey"):
            cma = cm.Greys
        cax = ax.imshow(s.data(), interpolation='nearest', cmap=cma)

        cbar = fig.colorbar(cax, ticks=[dz.min(), (dz.max()+dz.min())/2, dz.max()], orientation='vertical')
        cbar.ax.set_xticklabels(['Low', 'Medium', 'High'])# horizontal colorbar

    ax.set_title('Sensor Data')
    print "Saving image..."
    plt.savefig(outfile, dpi=500)
    print "All done!"
开发者ID:ruphy,项目名称:esame-lab2,代码行数:48,代码来源:program.py

示例12: db_to_logs

def db_to_logs(ano):
    """
    Extrai as decisoes do bancoe as salva em um arquivo no formato do Gource
    """
    #Q = dbdec.execute("SELECT relator,processo,tipo,proc_classe,duracao, UF,data_dec, count(*) FROM decisao WHERE DATE_FORMAT(data_dec,'%Y%')="+"%s"%ano+" GROUP BY relator,tipo,proc_classe")
    Q = dbdec.execute("SELECT relator,processo,tipo,proc_classe,duracao, UF,data_dec FROM decisao WHERE DATE_FORMAT(data_dec,'%Y%')="+"%s"%ano+" ORDER BY data_dec asc")
    decs = Q.fetchall()
    durations = [d[4] for d in decs]
    cmap = cm.jet
    norm = normalize(min(durations), max(durations)) #normalizing durations
    with open('decisoes_%s.log'%ano, 'w') as f:
        for d in decs:
            c = rgb2hex(cmap(norm(d[4]))[:3]).strip('#')
            path = "/%s/%s/%s/%s"%(d[5],d[2],d[3], d[1]) #/State/tipo/proc_classe/processo
            l = "%s|%s|%s|%s|%s\n"%(int(time.mktime(d[6].timetuple())), d[0], 'A', path, c)
            f.write(l)
开发者ID:Ralpbezerra,项目名称:Supremo,代码行数:16,代码来源:gourceviz.py

示例13: histogram

	def histogram(self):
		self.ax.set_title('Histogram of Evidence Based Scheduling [ %d ]' % len(self.H))
		self.ax.set_xlabel('Time (h)',fontstyle='italic')
		self.ax.set_ylabel('Probability (%)',fontstyle='italic')
		self.ax.set_ylim(0,110)
		self.ax.grid(True)

		self.ax.axvline(self.u, color='#90EE90', linestyle='dashed', lw=2)

		self.H += self.mc.probes(1000)
		n, bins, patches = self.ax.hist(self.H, bins=self.count , edgecolor='white', alpha=0.75)
		nmax=n.max() # najwyższy słupek

		# zmienna skala osi Y
		self.ax.set_xticks([ round(i,2) for i in bins[::self.scale] ])
		# self.ax.set_xticklabels(('a','b')) # tak można dodać label zamiast wartości
		self.figure.autofmt_xdate() # pochyłe literki

		# strzałka
		if self.arrow:
			pyplot.annotate('simple estimation', xy=(self.u, 90), xytext=(min(bins), 100),
				arrowprops=dict(facecolor='blue', shrink=0.005))

		if self.help == 1 :
			pyplot.annotate('help (h)',
				xy=(max(bins), 90),
				xytext=((self.u+max(bins))/2, 90),
				ha='left')
		elif self.help == 2 :
			pyplot.annotate('\n'.join(self.usage),
				xy=(max(bins), 90),
				xytext=((self.u+max(bins))/2, 60),
				ha='left')

		# normalizacja
		for p in patches:
			p.set_height((p.get_height() * 100.0 ) / nmax )

		# tęcza
		fracs = n.astype(float)/nmax
		norm = colors.normalize(fracs.min(), fracs.max())

		for f, p in zip(fracs, patches):
			color = cm.jet(norm(f))
			p.set_facecolor(color)
开发者ID:borzole,项目名称:borzole,代码行数:45,代码来源:ebs.py

示例14: hist_com_difference_plot

def hist_com_difference_plot(filename,image_output,graph_title=''):
	distance = []
	for line in open(filename):
                if line[0] == "#" or line[0] == "@": continue
                line_content = line.split()
		distance.append(float(line_content[1]))
	fig = figure()
	N,bins,patches = hist(distance,range(-30,30))
        fracs = N.astype(float)/N.max()
        norm = colors.normalize(fracs.min(), fracs.max())

	for thisfrac, thispatch in zip(fracs, patches):
        	color = cm.jet(norm(thisfrac))
        	thispatch.set_facecolor(color)

	xlabel('Z Distance between Protein and Bilayer centers')
	ylabel('Frequency')
	title(graph_title)
	savefig(image_output)
开发者ID:hallba,项目名称:Sidekick,代码行数:19,代码来源:AutomatedPlot.py

示例15: plot_mod

def plot_mod(x, z, yvals, ylabel, ax, ind=0, cmap=pl.cm.rainbow,
             printlabel=True):
    """ Plot column-density-derived values yvals as a function of the
    x values (NHI, nH or Z), showing variation of quantity z by
    different coloured curves. ind is the index of the value used,
    which isn't varied.
    """ 
    # Want index order to be indtype, x, z. By default it's NHI, nH,
    # Z. Otherwise it has to change...
    if (x,z) == ('NHI','Z'):
        yvals = np.swapaxes(yvals, 0, 1) 
    elif (x,z) == ('Z','NHI'):
        yvals = np.swapaxes(yvals, 0, 1)
        yvals = np.swapaxes(yvals, 1, 2) 
    elif (x,z) == ('nH','NHI'):
        yvals = np.swapaxes(yvals, 0, 2) 
    elif (x,z) == ('NHI', 'nH'):
        yvals = np.swapaxes(yvals, 0, 2)
        yvals = np.swapaxes(yvals, 1, 2)
    elif (x,z) == ('Z','nH'):
        yvals = np.swapaxes(yvals, 1, 2) 
    
    norm = colors.normalize(M[z].min(), M[z].max())
    label_indices = set((0, len(M[z])//2, len(M[z])-1))
    for i in range(len(M[z])):
        # spring, summer, autumn, winter are all good
        c = cmap(norm(M[z][i]))
        label = None
        if i in label_indices:
            label = labels[z] % M[z][i]
        #ax.plot(M[x], yvals[ind,:,i], '-', lw=2.5, color='k') 
        ax.plot(M[x], yvals[ind,:,i], '-', lw=1.5, color=c, label=label)

    val, = list(set(['nH','NHI','Z']).difference([x,z]))
    if printlabel:
        ax.set_title(labels[val] % M[val][ind], fontsize='medium')
        ax.title.set_y(1.01)

    ax.set_xlabel(xlabels[x], fontsize='small')
    ax.set_ylabel(ylabel)
    ax.minorticks_on()
    ax.set_xlim(M[x][0]+1e-3, M[x][-1]-1e-3)
开发者ID:nhmc,项目名称:H2,代码行数:42,代码来源:cloudy_plot.py


注:本文中的matplotlib.colors.normalize函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。