本文整理汇总了Python中matplotlib.collections.PatchCollection.set_alpha方法的典型用法代码示例。如果您正苦于以下问题:Python PatchCollection.set_alpha方法的具体用法?Python PatchCollection.set_alpha怎么用?Python PatchCollection.set_alpha使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.collections.PatchCollection
的用法示例。
在下文中一共展示了PatchCollection.set_alpha方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: data2fig
# 需要导入模块: from matplotlib.collections import PatchCollection [as 别名]
# 或者: from matplotlib.collections.PatchCollection import set_alpha [as 别名]
def data2fig(data, X, options, legend_title, xlabel, ylabel=r'Reachability~$\reachability$'):
if options['grayscale']:
colors = options['graycm'](pylab.linspace(0, 1, len(data.keys())))
else:
colors = options['color'](pylab.linspace(0, 1, len(data.keys())))
fig = MyFig(options, figsize=(10, 8), xlabel=r'Sources~$\sources$', ylabel=ylabel, grid=False, aspect='auto', legend=True)
for j, nhdp_ht in enumerate(sorted(data.keys())):
d = data[nhdp_ht]
try:
mean_y = [scipy.mean(d[n]) for n in X]
except KeyError:
logging.warning('key \"%s\" not found, continuing...', nhdp_ht)
continue
confs_y = [confidence(d[n])[2] for n in X]
poly = [conf2poly(X, list(numpy.array(mean_y)+numpy.array(confs_y)), list(numpy.array(mean_y)-numpy.array(confs_y)), color=colors[j])]
patch_collection = PatchCollection(poly, match_original=True)
patch_collection.set_alpha(0.3)
patch_collection.set_linestyle('dashed')
fig.ax.add_collection(patch_collection)
fig.ax.plot(X, mean_y, label='$%d$' % nhdp_ht, color=colors[j])
fig.ax.set_xticks(X)
fig.ax.set_xticklabels(['$%s$' % i for i in X])
fig.ax.set_ylim(0,1)
fig.legend_title = legend_title
return fig
示例2: get_circles_for_scatter
# 需要导入模块: from matplotlib.collections import PatchCollection [as 别名]
# 或者: from matplotlib.collections.PatchCollection import set_alpha [as 别名]
def get_circles_for_scatter(x, y, color='black', edgecolor='none', colormap='jet', radius=0.01, colornorm=None, alpha=1, radiusnorm=None, maxradius=1, minradius=0):
cmap = plt.get_cmap(colormap)
if colornorm is not None:
colornorm = plt.Normalize(colornorm[0], colornorm[1], clip=True)
# setup normalizing for radius scale factor (if used)
if type(radius) is list or type(radius) is np.array or type(radius) is np.ndarray:
if radiusnorm is None:
radiusnorm = matplotlib.colors.Normalize(np.min(radius), np.max(radius), clip=True)
else:
radiusnorm = matplotlib.colors.Normalize(radiusnorm[0], radiusnorm[1], clip=True)
# make circles
points = np.array([x, y]).T
circles = [None for i in range(len(x))]
for i, pt in enumerate(points):
if type(radius) is list or type(radius) is np.array or type(radius) is np.ndarray:
r = radiusnorm(radius[i])*(maxradius-minradius) + minradius
else:
r = radius
circles[i] = patches.Circle( pt, radius=r )
# make a collection of those circles
cc = PatchCollection(circles, cmap=cmap, norm=colornorm) # potentially useful option: match_original=True
# set properties for collection
cc.set_edgecolors(edgecolor)
if type(color) is list or type(color) is np.array or type(color) is np.ndarray:
cc.set_array(color)
else:
cc.set_facecolors(color)
cc.set_alpha(alpha)
return cc
示例3: draw
# 需要导入模块: from matplotlib.collections import PatchCollection [as 别名]
# 或者: from matplotlib.collections.PatchCollection import set_alpha [as 别名]
def draw(options):
files = [f for f in os.listdir(options['outdir']) if f.endswith('.data')]
degrees = list()
diameters = list()
velocities = list()
for f in files:
fin = open(options['outdir']+'/'+f, 'r')
ts = -1
for line in fin:
if line.startswith('#'):
continue
time, degree, diameter, velocity = [t.strip() for t in line.split(',')]
time = int(time)
assert(ts == time-1)
ts = time
try:
degrees[time].append(float(degree))
diameters[time].append(int(diameter))
velocities[time].append(float(velocity))
except IndexError:
degrees.append([float(degree)])
diameters.append([int(diameter)])
velocities.append([float(velocity)])
polies = list()
times = range(len(degrees))
times2 = times + times[::-1]
degrees_conf_upper = [confidence(d)[0] for d in degrees]
degrees_conf_lower = [confidence(d)[1] for d in degrees]
polies.append(conf2poly(times, degrees_conf_upper, degrees_conf_lower, color='blue'))
diameters_conf_upper = [confidence(d)[0] for d in diameters]
diameters_conf_lower = [confidence(d)[1] for d in diameters]
polies.append(conf2poly(times, diameters_conf_upper, diameters_conf_lower, color='blue'))
velocities_conf_upper = [confidence(d)[0] for d in velocities]
velocities_conf_lower = [confidence(d)[1] for d in velocities]
polies.append(conf2poly(times, velocities_conf_upper, velocities_conf_lower, color='green'))
velocities = [scipy.mean(d) for d in velocities]
diameters = [scipy.mean(d) for d in diameters]
degrees = [scipy.mean(d) for d in degrees]
fig = MyFig(options, figsize=(10, 8), xlabel='Time [s]', ylabel='Metric', grid=False, legend=True, aspect='auto', legend_pos='upper right')
patch_collection = PatchCollection(polies, match_original=True)
patch_collection.set_alpha(0.3)
patch_collection.set_linestyle('dashed')
fig.ax.add_collection(patch_collection)
fig.ax.plot(times, degrees, label='Mean degree', color='blue')
fig.ax.plot(times, diameters, label='Diameter', color='red')
fig.ax.plot(times, velocities, label='Mean velocity $[m/s]$', color='green')
fig.ax.set_xlim(0, options['duration'])
y_max = max(max(degrees), max(diameters), max(velocities))
fig.ax.set_ylim(0, y_max+10)
fig.save('metrics', fileformat='pdf')
示例4: show_boxes
# 需要导入模块: from matplotlib.collections import PatchCollection [as 别名]
# 或者: from matplotlib.collections.PatchCollection import set_alpha [as 别名]
def show_boxes(boxes,S=None,col='b',ecol='k',alpha=1, fig=None):
if boxes.dim != 2:
raise Exception("show_boxes: dimension must be 2")
if S is None:
S = range(boxes.size)
patches = []
for i in S:
art = mpatches.Rectangle(boxes.corners[i],boxes.widths[i][0],boxes.widths[i][1])
patches.append(art)
if fig is not None:
ax = fig.gca()
else:
fig = plt.figure()
ax = fig.gca()
ax.hold(True)
collection = PatchCollection(patches)
collection.set_facecolor(col)
collection.set_edgecolor(ecol)
collection.set_alpha(alpha)
ax.add_collection(collection,autolim=True)
ax.autoscale_view()
#plt.show()
plt.draw()
return fig
示例5: plot_trajectory_ellipse
# 需要导入模块: from matplotlib.collections import PatchCollection [as 别名]
# 或者: from matplotlib.collections.PatchCollection import set_alpha [as 别名]
def plot_trajectory_ellipse(frame, varx="attr_VARX", vary="attr_VARY", covxy="attr_COVXY", opacity_factor=1):
"""
Draw the trajectory and uncertainty ellipses around teach point.
1) Scatter of points
2) Trajectory lines
3) Ellipses
:param frame: Trajectory
:param opacity_factor: all opacity values are multiplied by this. Useful when used to plot multiple Trajectories in
an overlay plot.
:return: axis
"""
ellipses = []
segments = []
start_point = None
for i, pnt in frame.iterrows():
# The ellipse
U, s, V = np.linalg.svd(np.array([[pnt[varx], pnt[covxy]],
[pnt[covxy], pnt[vary]]]), full_matrices=True)
w, h = s**.5
theta = np.arctan(V[1][0]/V[0][0]) # == np.arccos(-V[0][0])
ellipse = {"xy":pnt[list(frame.geo_cols)].values, "width":w, "height":h, "angle":theta}
ellipses.append(Ellipse(**ellipse))
# The line segment
x, y = pnt[list(frame.geo_cols)][:2]
if start_point:
segments.append([start_point, (x, y)])
start_point = (x, y)
ax = plt.gca()
ellipses = PatchCollection(ellipses)
ellipses.set_facecolor('none')
ellipses.set_color("green")
ellipses.set_linewidth(2)
ellipses.set_alpha(.4*opacity_factor)
ax.add_collection(ellipses)
frame.plot(kind="scatter", x=frame.geo_cols[0], y=frame.geo_cols[1], marker=".", ax=plt.gca(), alpha=opacity_factor)
lines = LineCollection(segments)
lines.set_color("gray")
lines.set_linewidth(1)
lines.set_alpha(.2*opacity_factor)
ax.add_collection(lines)
return ax
示例6: _get_fpt_ell_collection
# 需要导入模块: from matplotlib.collections import PatchCollection [as 别名]
# 或者: from matplotlib.collections.PatchCollection import set_alpha [as 别名]
def _get_fpt_ell_collection(dm, fpts, T_data, alpha, edgecolor):
ell_patches = []
for (x, y, a, c, d) in fpts: # Manually Calculated sqrtm(inv(A))
with catch_warnings():
simplefilter("ignore")
aIS = 1 / sqrt(a)
cIS = (c / sqrt(a) - c / sqrt(d)) / (a - d + eps(1))
dIS = 1 / sqrt(d)
transEll = Affine2D([(aIS, 0, x), (cIS, dIS, y), (0, 0, 1)])
unitCirc1 = Circle((0, 0), 1, transform=transEll)
ell_patches = [unitCirc1] + ell_patches
ellipse_collection = PatchCollection(ell_patches)
ellipse_collection.set_facecolor("none")
ellipse_collection.set_transform(T_data)
ellipse_collection.set_alpha(alpha)
ellipse_collection.set_edgecolor(edgecolor)
return ellipse_collection
示例7: get_ellipses_for_scatter
# 需要导入模块: from matplotlib.collections import PatchCollection [as 别名]
# 或者: from matplotlib.collections.PatchCollection import set_alpha [as 别名]
def get_ellipses_for_scatter(ax, x, y, color='black', edgecolor='none', colormap='jet', radius=0.01, colornorm=None, alpha=1, radiusnorm=None, maxradius=1, minradius=0):
# get ellipse size to make it a circle given axes
x0, y0 = ax.transAxes.transform((ax.get_ylim()[0],ax.get_xlim()[0]))
x1, y1 = ax.transAxes.transform((ax.get_ylim()[1],ax.get_xlim()[1]))
dx = x1-x0
dy = y1-y0
maxd = max(dx,dy)
cmap = plt.get_cmap(colormap)
if colornorm is not None:
colornorm = plt.Normalize(colornorm[0], colornorm[1], clip=True)
# setup normalizing for radius scale factor (if used)
if type(radius) is list or type(radius) is np.array or type(radius) is np.ndarray:
if radiusnorm is None:
radiusnorm = matplotlib.colors.Normalize(np.min(radius), np.max(radius), clip=True)
else:
radiusnorm = matplotlib.colors.Normalize(radiusnorm[0], radiusnorm[1], clip=True)
# make circles
points = np.array([x, y]).T
ellipses = [None for i in range(len(x))]
for i, pt in enumerate(points):
if type(radius) is list or type(radius) is np.array or type(radius) is np.ndarray:
r = radiusnorm(radius[i])*(maxradius-minradius) + minradius
else:
r = radius
width = r*2*maxd/dx
height = r*2*maxd/dy
ellipses[i] = patches.Ellipse( pt, width, height)
# make a collection of those circles
cc = PatchCollection(ellipses, cmap=cmap, norm=colornorm) # potentially useful option: match_original=True
# set properties for collection
cc.set_edgecolors(edgecolor)
if type(color) is list or type(color) is np.array or type(color) is np.ndarray:
cc.set_array(color)
else:
cc.set_facecolors(color)
cc.set_alpha(alpha)
return cc
示例8: plot_site
# 需要导入模块: from matplotlib.collections import PatchCollection [as 别名]
# 或者: from matplotlib.collections.PatchCollection import set_alpha [as 别名]
def plot_site(options):
options['prefix'] = 'site'
fig = MyFig(options, figsize=(10, 8), legend=True, grid=False, xlabel=r'Probability $p_s$', ylabel=r'Reachability~$\reachability$', aspect='auto')
fig_vs = MyFig(options, figsize=(10, 8), legend=True, grid=False, xlabel=r'Fraction of Forwarded Packets~$\forwarded$', ylabel=r'Reachability~$\reachability$', aspect='auto')
if options['grayscale']:
colors = options['graycm'](pylab.linspace(0, 1.0, 3))
else:
colors = fu_colormap()(pylab.linspace(0, 1.0, 3))
nodes = 105
axins = None
if options['inset_loc'] >= 0:
axins = zoomed_inset_axes(fig_vs.ax, options['inset_zoom'], loc=options['inset_loc'])
axins.set_xlim(options['inset_xlim'])
axins.set_ylim(options['inset_ylim'])
axins.set_xticklabels([])
axins.set_yticklabels([])
mark_inset(fig_vs.ax, axins, loc1=2, loc2=3, fc="none", ec="0.5")
for i, (name, label) in enumerate(names):
data = parse_site_only(options['datapath'][0], name)
rs = numpy.array([r for p, r, std, conf, n, fw, fw_std, fw_conf in data if r <= options['limit']])
fws = numpy.array([fw for p, r, std, conf, n, fw, fw_std, fw_conf in data if r <= options['limit']])/(nodes-1)
ps = numpy.array([p for p, r, std, conf, n, fw, fw_std, fw_conf in data]) #[0:len(rs)])
yerr = numpy.array([conf for p,r,std,conf, n, fw, fw_std, fw_conf in data]) #[0:len(rs)])
patch_collection = PatchCollection([conf2poly(ps, list(rs+yerr), list(rs-yerr), color=colors[i])], match_original=True)
patch_collection.set_alpha(0.3)
patch_collection.set_linestyle('dashed')
fig.ax.add_collection(patch_collection)
fig.ax.plot(ps, rs, label=label, color=colors[i])
fig_vs.ax.plot(fws, rs, label=label, color=colors[i])
if axins:
axins.plot(fws, rs, color=colors[i])
fig.ax.set_ylim(0, options['limit'])
fig.legend_title = 'Graph'
fig.save('graphs')
fig_vs.legend_title = 'Graph'
fig_vs.ax.set_xlim(0,1)
fig_vs.ax.set_ylim(0,1)
fig_vs.save('vs_pb')
示例9: show_boxes
# 需要导入模块: from matplotlib.collections import PatchCollection [as 别名]
# 或者: from matplotlib.collections.PatchCollection import set_alpha [as 别名]
def show_boxes(boxes, S=None, col="b", ecol="k", alpha=1):
if boxes.dim != 2:
raise Exception("show_boxes: dimension must be 2")
if S is None:
S = range(boxes.size)
patches = []
for i in S:
art = mpatches.Rectangle(boxes.corners[i], boxes.widths[i][0], boxes.widths[i][1])
patches.append(art)
ax = plt.gca()
ax.hold(True)
collection = PatchCollection(patches)
collection.set_facecolor(col)
collection.set_edgecolor(ecol)
collection.set_alpha(alpha)
ax.add_collection(collection, autolim=True)
ax.autoscale_view()
plt.show()
示例10: show_box
# 需要导入模块: from matplotlib.collections import PatchCollection [as 别名]
# 或者: from matplotlib.collections.PatchCollection import set_alpha [as 别名]
def show_box(b, col="b", ecol="k", alpha=1):
patches = []
# lower left corner at b[0], followed by width and height
xy = b[0]
width = np.absolute(b[0, 1] - b[0, 0])
height = np.absolute(b[1, 1] - b[1, 0])
art = mpatches.Rectangle(xy, width, height)
# art = mpatches.Rectangle(b[0],b[1,0],b[1,1])
patches.append(art)
ax = plt.gca()
ax.hold(True)
collection = PatchCollection(patches)
collection.set_facecolor(col)
collection.set_edgecolor(ecol)
collection.set_alpha(alpha)
ax.add_collection(collection, autolim=True)
ax.autoscale_view()
plt.show()
示例11: plot_sparse_trajectory
# 需要导入模块: from matplotlib.collections import PatchCollection [as 别名]
# 或者: from matplotlib.collections.PatchCollection import set_alpha [as 别名]
def plot_sparse_trajectory(trajectory, r=50, opacity_factor=1, plot_text=True,
num_col="segment_sparcify_n", min_static=100):
"""
Plots a sparsified trajectory as circles with the number of points they represent as a number inside.
:param trajectory: Trajectory object
:param r: the radius of circles
:param num_col: where to find the number to put in the circles
:param min_static: minimum count to change color of circle
:param plot_text: put the text with num of points in the circle?
:return: ax
"""
ax = plt.gca()
trajectory.plot(kind="scatter", x=trajectory.geo_cols[0], y=trajectory.geo_cols[1], marker=".",
ax=plt.gca(), alpha=0.0*opacity_factor)
circles = []
segments = []
start_point = None
for i, pnt in trajectory.iterrows():
circles.append(Circle(pnt[list(trajectory.geo_cols)].values, radius=r))
if plot_text:
plt.text(*pnt[list(trajectory.geo_cols)], s=str(int(pnt[num_col])), fontsize=12)
x, y = pnt[list(trajectory.geo_cols)][:2]
if start_point:
segments.append([start_point, (x, y)])
start_point = (x, y)
circles = PatchCollection(circles)
circles.set_facecolor(['none' if cnt < min_static else 'red' for cnt in trajectory[num_col].values])
circles.set_alpha(.5*opacity_factor)
ax.add_collection(circles)
lines = LineCollection(segments)
lines.set_color("gray")
lines.set_alpha(.2*opacity_factor)
ax.add_collection(lines)
return ax
示例12: show_box
# 需要导入模块: from matplotlib.collections import PatchCollection [as 别名]
# 或者: from matplotlib.collections.PatchCollection import set_alpha [as 别名]
def show_box(b,col='b',ecol='k',alpha=1, fig=None):
patches = []
# lower left corner at b[0], followed by width and height
art = mpatches.Rectangle(b[0],b[1,0],b[1,1])
patches.append(art)
if fig:
ax = fig.gca()
else:
fig = plt.figure()
ax = fig.gca()
ax.hold(True)
collection = PatchCollection(patches)
collection.set_facecolor(col)
collection.set_edgecolor(ecol)
collection.set_alpha(alpha)
ax.add_collection(collection,autolim=True)
ax.autoscale_view()
plt.show()
return fig
示例13: scatter
# 需要导入模块: from matplotlib.collections import PatchCollection [as 别名]
# 或者: from matplotlib.collections.PatchCollection import set_alpha [as 别名]
def scatter(ax, x, y, color='black', colormap='jet', radius=0.01, colornorm=None, alpha=1, radiusnorm=None, maxradius=1, minradius=0, edgecolors='none'):
# color can be array-like, or a matplotlib color
# I can't figure out how to control alpha through the individual circle patches.. it seems to get overwritten by the collection. low priority!
cmap = plt.get_cmap(colormap)
if colornorm is not None:
colornorm = plt.Normalize(colornorm[0], colornorm[1], clip=True)
# setup normalizing for radius scale factor (if used)
if type(radius) is list or type(radius) is np.array or type(radius) is np.ndarray:
if radiusnorm is None:
radiusnorm = matplotlib.colors.Normalize(np.min(radius), np.max(radius), clip=True)
else:
radiusnorm = matplotlib.colors.Normalize(radiusnorm[0], radiusnorm[1], clip=True)
# make circles
points = np.array([x, y]).T
circles = [None for i in range(len(x))]
for i, pt in enumerate(points):
if type(radius) is list or type(radius) is np.array or type(radius) is np.ndarray:
r = radiusnorm(radius[i])*(maxradius-minradius) + minradius
else:
r = radius
circles[i] = patches.Circle( pt, radius=r )
# make a collection of those circles
cc = PatchCollection(circles, cmap=cmap, norm=colornorm) # potentially useful option: match_original=True
# set properties for collection
cc.set_edgecolors(edgecolors)
if type(color) is list or type(color) is np.array or type(color) is np.ndarray:
cc.set_array(color)
else:
cc.set_facecolors(color)
cc.set_alpha(alpha)
# add collection to axis
ax.add_collection(cc)
示例14: Polygon
# 需要导入模块: from matplotlib.collections import PatchCollection [as 别名]
# 或者: from matplotlib.collections.PatchCollection import set_alpha [as 别名]
# a cor do polígono vem da imagem original
cores.append(image_rgb[y-1][x-1])
# criamos um polígono para representar o triângulo (aqui começa o desenho
# que estamos sintetizando)
poly = Polygon(pontos[:,[0,1]][t_i], True)
patches.append(poly)
# adicionamos os polígonos a uma coleção de colagens
p = PatchCollection(patches)
#print 'patches:', len(patches), 'regions:', len(cores)
# definimos as cores conforme imagem original e as bordas em transparente
p.set_facecolor(cores)
p.set_edgecolor(cores)
p.set_alpha(.8)
# plotamos o desenho sintetizado
ax3.add_collection(p)
for ax in axes:
ax.axis('off')
nome_pintura = '%s_passos.svg' % IMG[:-4]
fig.savefig(nome_pintura)
print 'pintura gerada em: %s' % nome_pintura
# lista com coordenadas de cada triângulo
# print 'coords. triângulos:', coords_tri
# número de triângulos
# print 'num. de triângulos:', len(coords_tri)
示例15: plot_multiZ
# 需要导入模块: from matplotlib.collections import PatchCollection [as 别名]
# 或者: from matplotlib.collections.PatchCollection import set_alpha [as 别名]
def plot_multiZ(prefix, minval=0, maxval=200, bluefree=702):
fraclist = np.array([0.005, 0.02, 0.2, 0.4, 1, 2.5])
rw = 0.5
rh = 0.05
minchi = np.inf
for z in range(fraclist.size):
stepfile = "{}_Z{:04}_steps.dat".format(prefix, int(fraclist[z] * 1000))
blueChi = np.loadtxt(stepfile, usecols=(17,), unpack=True)
blueChi *= bluefree
if blueChi[-1] < minchi:
minchi = blueChi[-1]
fig = plt.figure()
grid = ImageGrid(
fig, 111, nrows_ncols=(1, 1), cbar_mode="each", cbar_location="top", cbar_pad="1%", axes_class=None
)
ax = grid[0]
ax.set_xlabel("$Z/Z_{\odot}$")
ax.set_ylabel("MLWA")
for z in range(fraclist.size):
stepfile = "{}_Z{:04}_steps.dat".format(prefix, int(fraclist[z] * 1000))
MLWA, TAUV, Chi, blueChi = np.loadtxt(stepfile, usecols=(12, 13, 15, 17), unpack=True)
blueChi *= bluefree
# good = np.where(blueChi < 80)
# blueChi = blueChi[good]
# MLWA = MLWA[good]
blueChi -= minchi
patches = []
print np.log10(blueChi.min()), np.log10(blueChi.max())
for i in range(MLWA.size):
# patches.append(Circle((z,MLWA[i]),radius=0.1,linewidth=0))
width = rw * ((minchi + 5000) / (blueChi[i] + 5000))
# width = rw * (minchi/blueChi[i])
patches.append(Rectangle((z - width / 2, MLWA[i] - rh / 2), width, rh))
collection = PatchCollection(
np.array(patches)[::-1],
cmap=plt.get_cmap("gnuplot"),
norm=matplotlib.colors.Normalize(vmin=minval, vmax=maxval),
)
collection.set_alpha(0.1)
collection.set_linewidth(0.0)
collection.set_array(np.log10(blueChi)[::-1])
ax.add_collection(collection)
# ax.axhline(y=MLWA[-1],color='k',ls=':',alpha=0.6)
ax.hlines(MLWA[-1], z - 0.5, z + 0.5, color="g", lw=2)
ax.text(
z + 0.5,
MLWA[-1],
"{:5.2f}%, {:4.1f}".format(100 - 100 * ss.chi2.cdf(blueChi[-1], bluefree + 5), blueChi[-1]),
)
collection.set_alpha(1.0)
cbar = ax.cax.colorbar(collection)
ci = [68.27, 50.0, 80.0, 40.0]
dc = [4.72, 3.36, 5.99, 2.75]
# for (c, d) in zip(ci, dc):
# ax.cax.axvline(x = np.log10(d), color='g')
# ax.cax.text(np.log10(d) - 0.03, 2, '{}'.format(c),
# transform=ax.cax.transData,
# fontsize=8)
collection.set_alpha(0.1)
cbar.set_label_text("Log( $\Delta\chi^2_{\mathrm{blue}}$ )")
ax.set_xlim(-1, fraclist.size + 1)
ax.set_ylim(0, 12)
ax.set_xticks(np.arange(fraclist.size))
ax.set_xticklabels(fraclist)
fig.show()
return fig