本文整理汇总了Python中matplotlib.cm.ScalarMappable.set_clim方法的典型用法代码示例。如果您正苦于以下问题:Python ScalarMappable.set_clim方法的具体用法?Python ScalarMappable.set_clim怎么用?Python ScalarMappable.set_clim使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.cm.ScalarMappable
的用法示例。
在下文中一共展示了ScalarMappable.set_clim方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _create_colorbar
# 需要导入模块: from matplotlib.cm import ScalarMappable [as 别名]
# 或者: from matplotlib.cm.ScalarMappable import set_clim [as 别名]
def _create_colorbar(self, cmap, ncolors, labels, **kwargs):
norm = BoundaryNorm(range(0, ncolors), cmap.N)
mappable = ScalarMappable(cmap=cmap, norm=norm)
mappable.set_array([])
mappable.set_clim(-0.5, ncolors+0.5)
colorbar = plt.colorbar(mappable, **kwargs)
colorbar.set_ticks(np.linspace(0, ncolors, ncolors+1)+0.5)
colorbar.set_ticklabels(range(0, ncolors))
colorbar.set_ticklabels(labels)
return colorbar
示例2: plot_net_layerwise
# 需要导入模块: from matplotlib.cm import ScalarMappable [as 别名]
# 或者: from matplotlib.cm.ScalarMappable import set_clim [as 别名]
def plot_net_layerwise(net, x_spacing=5, y_spacing=10, colors=[], use_labels=True, ax=None, cmap='gist_heat', cbar=False, positions={}):
if not colors:
colors = [1] * net.size()
args = {
'ax' : ax,
'node_color' : colors,
'nodelist' : net.nodes(), # ensure that same order is used throughout for parallel data like colors
'vmin' : 0,
'vmax' : 1,
'cmap' : cmap
}
if not positions:
# compute layer-wise positions of nodes (distance from roots)
nodes_by_layer = defaultdict(lambda: [])
def add_to_layer(n,l):
nodes_by_layer[l].append(n)
net.bfs_traverse(net.get_roots(), add_to_layer)
positions = {}
for l, nodes in nodes_by_layer.iteritems():
y = -l*y_spacing
# reorder layer lexicographically
nodes.sort(key=lambda n: n.get_name())
width = (len(nodes)-1) * x_spacing
for i,n in enumerate(nodes):
x = x_spacing*i - width/2
positions[n] = (x,y)
args['pos'] = positions
if use_labels:
labels = {n:n.get_name() for n in net.iter_nodes()}
args['labels'] = labels
if ax is None:
ax = plt.figure().add_subplot(1,1,1)
nxg = net_to_digraph(net)
nx.draw_networkx(nxg, **args)
ax.tick_params(axis='x', which='both', bottom='off', top='off', labelbottom='off')
ax.tick_params(axis='y', which='both', left='off', right='off', labelleft='off')
if cbar:
color_map = ScalarMappable(cmap=cmap)
color_map.set_clim(vmin=0, vmax=1)
color_map.set_array(np.array([0,1]))
plt.colorbar(color_map, ax=ax)
ax.set_aspect('equal')
# zoom out slightly to avoid cropping issues with nodes
xl = ax.get_xlim()
yl = ax.get_ylim()
ax.set_xlim(xl[0]-x_spacing/2, xl[1]+x_spacing/2)
ax.set_ylim(yl[0]-y_spacing/2, yl[1]+y_spacing/2)
示例3: custom_colorbar
# 需要导入模块: from matplotlib.cm import ScalarMappable [as 别名]
# 或者: from matplotlib.cm.ScalarMappable import set_clim [as 别名]
def custom_colorbar(cmap, ncolors, breaks, **kwargs):
from matplotlib.colors import BoundaryNorm
from matplotlib.cm import ScalarMappable
import matplotlib.colors as mplc
breaklabels = ['No Counts']+["> %d counts"%(perc) for perc in breaks[:-1]]
norm = BoundaryNorm(range(0, ncolors), cmap.N)
mappable = ScalarMappable(cmap=cmap, norm=norm)
mappable.set_array([])
mappable.set_clim(-0.5, ncolors+0.5)
colorbar = plt.colorbar(mappable, **kwargs)
colorbar.set_ticks(np.linspace(0, ncolors, ncolors+1)+0.5)
colorbar.set_ticklabels(range(0, ncolors))
colorbar.set_ticklabels(breaklabels)
return colorbar
示例4: custom_colorbar
# 需要导入模块: from matplotlib.cm import ScalarMappable [as 别名]
# 或者: from matplotlib.cm.ScalarMappable import set_clim [as 别名]
def custom_colorbar(cmap, ncolors, labels, **kwargs):
"""Create a custom, discretized colorbar with correctly formatted/aligned labels.
cmap: the matplotlib colormap object you plan on using for your graph
ncolors: (int) the number of discrete colors available
labels: the list of labels for the colorbar. Should be the same length as ncolors.
"""
from matplotlib.colors import BoundaryNorm
from matplotlib.cm import ScalarMappable
norm = BoundaryNorm(range(0, ncolors), cmap.N)
mappable = ScalarMappable(cmap=cmap, norm=norm)
mappable.set_array([])
mappable.set_clim(-0.5, ncolors+0.5)
colorbar = plt.colorbar(mappable, **kwargs)
colorbar.set_ticks(np.linspace(0, ncolors, ncolors+1)+0.5)
colorbar.set_ticklabels(range(0, ncolors))
colorbar.set_ticklabels(labels)
return colorbar
示例5: make_plot
# 需要导入模块: from matplotlib.cm import ScalarMappable [as 别名]
# 或者: from matplotlib.cm.ScalarMappable import set_clim [as 别名]
def make_plot(self, val, cct, clm,
cmap = 'jet', cmap_norm = None,
cmap_vmin = None, cmap_vmax = None):
# make color mapping
smap = ScalarMappable(cmap_norm, cmap)
smap.set_clim(cmap_vmin, cmap_vmax)
smap.set_array(val)
bin_colors = smap.to_rgba(val)
# make patches
patches = []
for i_c, i_clm in enumerate(clm):
patches.append(Rectangle((i_clm[0], i_clm[2]),
i_clm[1] - i_clm[0],
i_clm[3] - i_clm[2]))
patches_colle = PatchCollection(patches)
patches_colle.set_edgecolor('face')
patches_colle.set_facecolor(bin_colors)
return patches_colle, smap
示例6: _custom_colorbar
# 需要导入模块: from matplotlib.cm import ScalarMappable [as 别名]
# 或者: from matplotlib.cm.ScalarMappable import set_clim [as 别名]
def _custom_colorbar(cmap, ncolors, labels, **kwargs):
"""Create a custom, discretized colorbar with correctly formatted/aligned labels.
It was inspired mostly by the example provided in http://beneathdata.com/how-to/visualizing-my-location-history/
:param cmap: the matplotlib colormap object you plan on using for your graph
:param ncolors: (int) the number of discrete colors available
:param labels: the list of labels for the colorbar. Should be the same length as ncolors.
:return: custom colorbar
"""
if ncolors <> len(labels):
raise MapperError("Number of colors is not compatible with the number of labels")
else:
norm = BoundaryNorm(range(0, ncolors), cmap.N)
mappable = ScalarMappable(cmap=cmap)
mappable.set_array([])
mappable.set_clim(-0.5, ncolors+0.5)
colorbar = plt.colorbar(mappable, **kwargs)
colorbar.set_ticks(np.linspace(0, ncolors, ncolors+1)+0.5)
colorbar.set_ticklabels(range(0, ncolors))
colorbar.set_ticklabels(labels)
return colorbar
示例7: make_cmap_sm_norm
# 需要导入模块: from matplotlib.cm import ScalarMappable [as 别名]
# 或者: from matplotlib.cm.ScalarMappable import set_clim [as 别名]
def make_cmap_sm_norm(d=None,clim=None,cmap=None):
if cmap == 'red_blue':
cmap = red_blue_cm()
if cmap == 'banas_cm':
if clim==None:
cmap = banas_cm(np.min(d[:]),np.min(d[:]),np.max(d[:]),np.max(d[:]))
elif len(clim) == 2:
cmap = banas_cm(clim[0],clim[0],clim[1],clim[1])
elif len(clim) == 4:
cmap = banas_cm(clim[0],clim[1],clim[2],clim[3])
elif cmap == 'banas_hsv_cm':
if clim==None:
cmap = banas_hsv_cm(np.min(d[:]),np.min(d[:]),np.max(d[:]),np.max(d[:]))
elif len(clim) == 2:
cmap = banas_hsv_cm(clim[0],clim[0],clim[1],clim[1])
elif len(clim) == 4:
cmap = banas_hsv_cm(clim[0],clim[1],clim[2],clim[3])
norm = Normalize(vmin=clim[0],vmax=clim[-1],clip=False)
sm = ScalarMappable(norm=norm,cmap=cmap)
sm.set_clim(vmin=clim[0],vmax=clim[-1])
sm.set_array(np.array([0]))
return cmap,sm,norm
示例8: PCA_sklearn
# 需要导入模块: from matplotlib.cm import ScalarMappable [as 别名]
# 或者: from matplotlib.cm.ScalarMappable import set_clim [as 别名]
# for location in locations['features']:
# print location
locations = locations["features"][20:22]
pca = PCA_sklearn()
pca.fit(predictors, locations, startdate=startdate, enddate=enddate)
# pca.save('pca.nc')
# pca.load('pca.nc')
reduced_predictors = pca.transform(predictors, startdate=startdate, enddate=enddate)
vmin = 0
vmax = 50
mappable = ScalarMappable(cmap="Blues")
mappable.set_array(np.arange(vmin, vmax, 0.1))
mappable.set_clim((vmin, vmax))
id = 20
for pred in reduced_predictors:
tree = BinaryTree(pred, maxdepth=10)
fig = plt.fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111)
# ax.scatter(np.array(tree.samples)[:,0], np.array(tree.samples)[:,1], s=1, alpha=0.4, color='black')
values = np.ma.masked_less(predictand_data[:, id], 0.1)
# ax.scatter(np.array(tree.samples)[:,0], np.array(tree.samples)[:,1], c='grey', s=5, alpha=0.3)
# ax.scatter(np.array(tree.samples)[:,0], np.array(tree.samples)[:,1], c=values, s=values, alpha=0.7)
tree.plot_density(ax, mappable)
plt.show()
示例9: style_all_tags
# 需要导入模块: from matplotlib.cm import ScalarMappable [as 别名]
# 或者: from matplotlib.cm.ScalarMappable import set_clim [as 别名]
def style_all_tags(soup, container, background=True, margin=None, border=False, css=True, images=True, only_container=False):
"""Only used for debugging"""
#if only_container:
#soup = container
(min_score, max_score) = get_min_and_max_scores(soup)
min_score = -log(-min_score)
max_score = log(max_score)
sm = ScalarMappable(cmap=RdYlGn)
sm.set_clim(0,1)
if not css:
for link in soup.find_all("link"):
link.decompose()
if not images:
for img in soup.find_all("img"):
img.decompose()
for tag in soup.find_all():
if not isinstance(tag, element.Tag):
continue
if css:
try:
style = tag["style"].split(";")
except:
style = []
else:
style = []
if margin is not None:
if margin > 0:
style.append("margin: %dpx" % margin)
try:
score = sum(tag.scores.values())
rgb = score_to_rgb(score, sm, min_score, max_score)
tag.scores['total'] = score
except:
score = -1
rgb = (230, 230, 230)
if background:
style.append("background-color: rgb(%d,%d,%d)" % rgb)
try:
if tag in container.descendants and score > -30:
style.append("color: #000000")
else:
style.append("color: #666666")
except:
pass
if tag == container:
style.append("border: 3px dashed #0000CC")
style.append("color: #000000")
else:
if border:
style.append("border: 1px solid #333333")
try:
tag['style'] = "; ".join(style)
tag['scores'] = repr(tag.scores)
del tag.scores['total']
except:
pass
示例10: SpiroGraph
# 需要导入模块: from matplotlib.cm import ScalarMappable [as 别名]
# 或者: from matplotlib.cm.ScalarMappable import set_clim [as 别名]
class SpiroGraph(object):
'''
Spirograph drawer with matplotlib slider widgets to change parameters.
Parameters of line are:
R: The radius of the big circle
r: The radius of the small circle which rolls along the inside of the
bigger circle
p: distance from centre of smaller circle to point in the circle where
the pen hole is.
tmax: the angle through which the smaller circle is rotated to draw the
spirograph
tstep: how often matplotlib plots a point
a, b, c: parameters of the linewidth equation.
'''
# kwargs for each of the matplotlib sliders
slider_kwargs = (
{'label': 't_max', 'valmin': np.pi, 'valmax': 200 * np.pi,
'valinit': tmax0, 'valfmt': PiString()},
{'label': 't_step', 'valmin': 0.01,
'valmax': 10, 'valinit': tstep0},
{'label': 'R', 'valmin': 1, 'valmax': 200, 'valinit': R0},
{'label': 'r', 'valmin': 1, 'valmax': 200, 'valinit': r0},
{'label': 'p', 'valmin': 1, 'valmax': 200, 'valinit': p0},
{'label': 'colour', 'valmin': 0, 'valmax': 1, 'valinit': 1},
{'label': 'width_a', 'valmin': 0.5, 'valmax': 10, 'valinit': 1},
{'label': 'width_b', 'valmin': 0, 'valmax': 10, 'valinit': 0},
{'label': 'width_c', 'valmin': 0, 'valmax': 10, 'valinit': 0.5})
rbutton_kwargs = (
{'labels': ('black', 'white'), 'activecolor': 'white', 'active': 0},
{'labels': ('solid', 'variable'), 'activecolor': 'white', 'active': 0})
def __init__(self, colormap, figsize=(7, 10)):
self.colormap_name = colormap
self.variable_color = False
# Use ScalarMappable to map full colormap to range 0 - 1
self.colormap = ScalarMappable(cmap=colormap)
self.colormap.set_clim(0, 1)
# set up main axis onto which to draw spirograph
self.figsize = figsize
plt.rcParams['figure.figsize'] = figsize
self.fig, self.mainax = plt.subplots()
plt.subplots_adjust(bottom=0.3)
title = self.mainax.set_title('Spirograph Drawer!',
size=20,
color='white')
self.text = [title, ]
# set up slider axes
self.slider_axes = [plt.axes([0.25, x, 0.65, 0.015])
for x in np.arange(0.05, 0.275, 0.025)]
# same again for radio buttons
self.rbutton_axes = [plt.axes([0.025, x, 0.1, 0.15])
for x in np.arange(0.02, 0.302, 0.15)]
# use log scale for tstep slider
self.slider_axes[1].set_xscale('log')
# turn off frame, ticks and tick labels for all axes
for ax in chain(self.slider_axes, self.rbutton_axes, [self.mainax, ]):
ax.axis('off')
# use axes and kwargs to create list of sliders/rbuttons
self.sliders = [Slider(ax, **kwargs)
for ax, kwargs in zip(self.slider_axes,
self.slider_kwargs)]
self.rbuttons = [RadioButtons(ax, **kwargs)
for ax, kwargs in zip(self.rbutton_axes,
self.rbutton_kwargs)]
self.update_figcolors()
# set up initial line
self.t = np.arange(0, tmax0, tstep0)
x, y = spiro_linefunc(self.t, R0, r0, p0)
self.linecollection = LineCollection(
segments(x, y),
linewidths=spiro_linewidths(self.t, a0, b0, c0),
color=self.colormap.to_rgba(col0))
self.mainax.add_collection(self.linecollection)
# creates the plot and connects sliders to various update functions
self.run()
def update_figcolors(self, bgcolor='black'):
'''
function run by background color radiobutton. Sets all labels, text,
and sliders to foreground color, all axes to background color
'''
fgcolor = 'white' if bgcolor == 'black' else 'black'
self.fig.set_facecolor(bgcolor)
self.mainax.set_axis_bgcolor(bgcolor)
for ax in chain(self.slider_axes, self.rbutton_axes):
ax.set_axis_bgcolor(bgcolor)
# set fgcolor elements to black or white, mostly elements of sliders
for item in chain(map(attrgetter('label'), self.sliders),
map(attrgetter('valtext'), self.sliders),
map(attrgetter('poly'), self.sliders),
self.text,
*map(attrgetter('labels'), self.rbuttons)):
#.........这里部分代码省略.........