本文整理汇总了Python中matplotlib.cm.jet函数的典型用法代码示例。如果您正苦于以下问题:Python jet函数的具体用法?Python jet怎么用?Python jet使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了jet函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_coverage
def plot_coverage(counts, offset_x=0, frags_pos=None, frags_pos_out=None,
title=None):
'''Plot the coverage and the minor allele frequency'''
cov = counts.sum(axis=1)
cov_tot = cov.sum(axis=0)
fig, ax = plt.subplots(1, 1, figsize=(11, 8))
ax.plot(np.arange(len(cov_tot.T)) + offset_x, cov_tot.T, lw=2, c='k',
label=read_types)
ax.set_xlabel('Position [bases]')
ax.set_ylabel('Coverage')
ax.grid(True)
# If the fragments positions are marked, plot them
# Inner primers
if frags_pos is not None:
for i, frag_pos in enumerate(frags_pos.T):
ax.plot(frag_pos + offset_x, 2 * [(0.97 - 0.03 * (i % 2)) * ax.get_ylim()[1]],
c=cm.jet(int(255.0 * i / len(frags_pos.T))), lw=2)
# Outer primers
if frags_pos_out is not None:
for i, frag_pos in enumerate(frags_pos_out.T):
ax.plot(frag_pos + offset_x, 2 * [(0.96 - 0.03 * (i % 2)) * ax.get_ylim()[1]],
c=cm.jet(int(255.0 * i / len(frags_pos_out.T))), lw=2)
ax.set_xlim(0, 10000)
if title is not None:
ax.set_title(title, fontsize=18)
plt.tight_layout(rect=(0, 0, 1, 0.95))
示例2: findModDepths
def findModDepths(self):
oldtext = self.setButtonWait( self.findModDepthsPushButton )
self.imageview.M_ex_rects = []
self.imageview.M_em_rects = []
self.imageview.phase_ex_rects = []
self.imageview.phase_em_rects = []
self.m.find_modulation_depths_and_phases()
for s in self.m.validspots:
color = cm.jet(s.M_ex)
r = Rectangle( (s.coords[0],s.coords[1]), s.width, s.height, \
facecolor=color, edgecolor=color, alpha=1, zorder=7 )
self.imageview.M_ex_rects.append( r )
color = cm.jet(s.M_em)
r = Rectangle( (s.coords[0],s.coords[1]), s.width, s.height, \
facecolor=color, edgecolor=color, alpha=1, zorder=7 )
self.imageview.M_em_rects.append( r )
color = cm.jet(s.phase_ex/np.pi+.5)
r = Rectangle( (s.coords[0],s.coords[1]), s.width, s.height, \
facecolor=color, edgecolor=color, alpha=1, zorder=7 )
self.imageview.phase_ex_rects.append( r )
color = cm.jet(s.phase_em/np.pi+.5)
r = Rectangle( (s.coords[0],s.coords[1]), s.width, s.height, \
facecolor=color, edgecolor=color, alpha=1, zorder=7 )
self.imageview.phase_em_rects.append( r )
# self.imageview.axes.add_patch( self.imageview.spot_rects[-1] )
# self.imageview.show_stuff( what='M_ex' )
self.imageview.show_stuff(what='M_ex')
self.showStuffComboBox.setCurrentIndex(1)
self.unsetButtonWait( self.findModDepthsPushButton, oldtext)
示例3: makePriorGrid
def makePriorGrid(zs,rs,dr,outfile,rmin=15,rmax=30):
rMids = np.arange(16.,28.,0.1)
drs = 0.5*np.ones(len(rMids))
drs[rMids<23]=0.5
drs[rMids<20]=1.0
drs[rMids<19]=2.0
zEdges=np.arange(-0.075,5.075,0.1)
zMids = (zEdges[1:]+zEdges[:-1])/2.
allH = []
for i in range(len(rMids)):
#print(rMids[i])
rMsk = np.ma.masked_outside(rs,rMids[i]-dr,rMids[i]+dr)
zMsk = np.ma.masked_array(zs,mask=np.ma.getmask(rMsk)).compressed()
h = np.histogram(zMsk,bins=zEdges)[0]
kernel=np.ones(5)*(1./5.)
h2=sig.convolve(h,kernel,mode='same')
h3=sig.convolve(h2,kernel,mode='same')
g = interp1d(zMids,h3,bounds_error=False, fill_value=0.0)
tot = integrate.quad(g,0.,7.)
h3 = h3/tot[0]
if i%5==0:
plt.plot(zMids,h3,lw=3,alpha=0.75,color=cm.jet(i/len(rMids)),label='r='+str(rMids[i]))
else:
plt.plot(zMids,h3,lw=3,alpha=0.5,color=cm.jet(i/len(rMids)))
allH.append(h3)
return([rMids,zMids,np.array(allH)])
示例4: compSystems
def compSystems(workflow, systems):
subprocesses = {}
for system in systems:
subprocesses[system] = open(
"C:/cygwin64/home/jrayner/run2/scripts/benchmarking/" + system + workflow, "r"
) # open file containt subprocesses
subprocessNames = {}
subprocessTimeTaken = {}
subprocessCompleteTime = {}
for key in subprocesses:
rawData = [line.strip().split() for line in subprocesses[key]]
rawData = np.array(rawData) # read subplocesses in to numpy array
times = np.array(rawData[:, 0], dtype=np.float)
subprocessNames[key] = np.array(rawData[:, 1])
subprocessTimeTaken[key] = np.array(times) / 60 # read time column into its own array and convert to float
for i in range(len(times)):
times[i] = np.sum(times[max([0, i - 1]) : i + 1]) # generate clumaltive time for ploting ticks
subprocessCompleteTime[key] = times
subprocesses[key].close()
lenth = len(subprocessNames[system])
fig = plt.figure()
fig2 = plt.figure()
fig.suptitle(workflow)
fig2.suptitle(workflow)
x3 = fig.add_subplot(111) # plot subprocesses data
x1 = fig2.add_subplot(111)
barwidth = 0.5 / len(systems)
for i, system in enumerate(systems):
totaltime = np.sum(subprocessTimeTaken[system] / 60)
x3.bar(
np.arange(lenth) + barwidth * i,
subprocessTimeTaken[system] / 60,
width=barwidth,
color=cm.jet(1.0 * i / len(systems)),
label=system,
)
x1.bar(
np.arange(lenth) + barwidth * i,
subprocessTimeTaken[system] / totaltime / 60,
width=barwidth,
color=cm.jet(1.0 * i / len(systems)),
label=system,
)
x3.set_xticks(np.arange(lenth) + 0.25)
x3.set_xticklabels(subprocessNames[system], rotation=90)
print(subprocessNames[system])
x3.set_ylabel("time (minutes)")
x3.legend(loc="center left", bbox_to_anchor=(1, 0.5))
x1.set_xticks(np.arange(lenth + 0.25))
x1.set_xticklabels(subprocessNames[system], rotation=90)
x1.set_ylabel("time %")
x1.legend(loc="center left", bbox_to_anchor=(1, 0.5))
plt.show()
示例5: plot_propagator_theory
def plot_propagator_theory(xis, t, model='BSC', xlim=[0.03, 0.93], ax=None, logit=False,
VERBOSE=0, n=100):
'''Make and plot BSC propagators for some initial frequencies'''
from itertools import izip
from hivwholeseq.theory.propagators import propagator_BSC, propagator_neutral
if model == 'BSC':
propagator_fun = propagator_BSC
elif model in ('neutral', 'Kingman', 'Kimura'):
propagator_fun = lambda x, y: propagator_neutral(x, y, n=n)
if VERBOSE >= 1:
print 'Make the propagators'
xfs = []
rhos = []
for i, xi in enumerate(xis):
(xf, rho) = propagator_fun(xi, t)
xfs.append(xf)
rhos.append(rho)
if VERBOSE >= 1:
print 'Plot'
if ax is None:
ax_was_none = True
fig, ax = plt.subplots(figsize=(12, 8))
else:
ax_was_none = False
for i, (xi, xf, rho) in enumerate(izip(xis, xfs, rhos)):
ind_out1 = (xf < xlim[0])
ind_in = (xf >= xlim[0]) & (xf <= xlim[1])
ind_out2 = (xf > xlim[1])
ax.plot(xf[ind_in], rho[ind_in],
color=cm.jet(1.0 * i / len(xis)),
lw=2,
label='$x_i = '+'{:1.1f}'.format(xi)+'$')
ax.plot(xf[ind_out1], rho[ind_out1],
color=cm.jet(1.0 * i / len(xis)),
lw=2, ls='--', alpha=0.6)
ax.plot(xf[ind_out2], rho[ind_out2],
color=cm.jet(1.0 * i / len(xis)),
lw=2, ls='--', alpha=0.6)
if ax_was_none:
ax.set_xlabel('Final frequency')
if logit:
ax.set_xlim(10**(-3.1), 1.0 - 10**(-3.1))
ax.set_xscale('logit')
else:
ax.set_xscale('log')
ax.set_ylim(1e-3, 1e3)
ax.set_yscale('log')
ax.set_ylabel('P(x1 | x0)')
ax.set_title(model+' propagator, t = '+'{:1.1e}'.format(t))
ax.grid(True)
示例6: plot_dfcorrections
def plot_dfcorrections(plotfilename):
niters= [1,2,3,4,5,10,15,20,25]
bovy_plot.bovy_print(fig_height=7.,fig_width=8.)
ii= 0
# Load DF
pyplot.subplot(2,1,1)
dfc= dehnendf(beta=0.,correct=True,niter=niters[ii])
bovy_plot.bovy_plot(dfc._corr._rs,
numpy.log(dfc._corr._corrections[:,0]),
'-',gcf=True,color=cm.jet(1.),lw=2.,zorder=1,
xrange=[0.,5.],
yrange=[-0.25,0.25],
ylabel=r'$\ln \Sigma_{\mathrm{out}}(R)-\ln\Sigma_{\mathrm{DF}}(R)$')
linthresh= 0.0001
pyplot.yscale('symlog',linthreshy=linthresh)
for ii,niter in enumerate(niters[1:]):
dfcn= dehnendf(beta=0.,correct=True,niter=niter)
dfcp= dehnendf(beta=0.,correct=True,niter=niter-1)
bovy_plot.bovy_plot(dfc._corr._rs,
numpy.log(dfcn._corr._corrections[:,0])-numpy.log(dfcp._corr._corrections[:,0]),
'-',overplot=True,
color=cm.jet(1.-(ii+1)/float(len(niters))),lw=2.,
zorder=ii+2)
pyplot.fill_between(numpy.linspace(0.,5.,2.),
-linthresh*numpy.ones(2),
linthresh*numpy.ones(2),color='0.9',
zorder=0)
bovy_plot.bovy_text(4.,-0.00008,r'$\mathrm{linear\ scale}$',
backgroundcolor='w',size=16.)
pyplot.subplot(2,1,2)
bovy_plot.bovy_plot(dfc._corr._rs,
0.5*numpy.log(dfc._corr._corrections[:,1]),
'-',gcf=True,color=cm.jet(1.),lw=2.,zorder=1,
xrange=[0.,5.],
yrange=[-0.25,0.25],
xlabel=r'$R/R_0$',
ylabel=r'$\ln \sigma_{R,\mathrm{out}}(R)-\ln\sigma_{R,\mathrm{DF}}(R)$')
pyplot.yscale('symlog',linthreshy=linthresh)
for ii,niter in enumerate(niters[1:]):
dfcn= dehnendf(beta=0.,correct=True,niter=niter)
dfcp= dehnendf(beta=0.,correct=True,niter=niter-1)
bovy_plot.bovy_plot(dfc._corr._rs,
numpy.log(dfcn._corr._corrections[:,1])-numpy.log(dfcp._corr._corrections[:,1]),
'-',overplot=True,
color=cm.jet(1.-(ii+1)/float(len(niters))),lw=2.,
zorder=ii+2)
pyplot.fill_between(numpy.linspace(0.,5.,2.),
-linthresh*numpy.ones(2),
linthresh*numpy.ones(2),color='0.9',
zorder=0)
bovy_plot.bovy_text(4.,-0.00008,r'$\mathrm{linear\ scale}$',
backgroundcolor='w',size=16.)
pyplot.tight_layout()
bovy_plot.bovy_end_print(plotfilename)
return None
示例7: create_figure
def create_figure(all_data): # takes in data and title and creates and saves plot
width = 0.45 # width of the bars (in radians)
# create the figure, dont change
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
# angle positions, 0 to 360 with increments of 360/5
xo = list(range(0, 360, 360 / 5))
# Convert to radians and subtract half the width
# of a bar to center it.
x = [i * pi / 180 for i in xo]
# set the labels for each bar, do not change
ax.set_xticks(x)
ax.set_xticklabels(['Military\nProwess', 'Productivity', 'Resource', 'Self-\nSufficiency', 'Morale'])
ax.set_thetagrids(xo, frac=1.15) # frac changes distance of label from circumference of circle
plt.ylim(0, 100) # sets range for radial grid
fig.suptitle("India \n1993-2012", fontsize=20, y=0.5, x=0.1) # title of plot
plt.rgrids([20, 40, 60, 80, 100], angle=33, fontsize=10) # the numbers you see along radius, angle changes position
colorList = [];
count = -1
for key in all_data:
count = count + 1
data = all_data[key]
mylist = [item+0.5*(count-len(all_data)/2)/len(all_data) for item in x]
bars = ax.bar(mylist, data, width=width, align='center') # do the plotting
i = 0
for r, bar in zip(data, bars):
bar.set_facecolor( cm.jet(0.8*count/len(all_data))) # set color for each bar, intensity proportional to height of bar
colorList.append(cm.jet(0.8*count/len(all_data)))
#bar.set_alpha(0.2) # make color partly transparent
height = bar.get_height() # this is basically the radial height, or radius of bar
# write value of each bar inside it
# first param is angle, second is radius -10 makes it go inside the bar
if i == 3 and count == 0:
ax.text(mylist[i]-width/4*3, height+5, key, ha='center', va='center', fontsize=11)
if i == 3 and count == len(all_data)-1:
ax.text(mylist[i]+width/4*3, height-5, key, ha='center', va='center', fontsize=11)
i = i + 1
plt.savefig('examples/multiple.png')
示例8: plotFunc
def plotFunc(fig,axes):
axes.set_xlabel('integration time (s)')
axes.plot(intTimes,countStds,'k',label=r'total $\sigma$')
axes.plot(intTimes,countSqrts,'k--',label=r'$\sqrt{med(N)}$')
nBins = np.shape(spectrumStds)[1]
for iBin in xrange(nBins):
axes.plot(intTimes,spectrumStds[:,iBin],
c=cm.jet((iBin+1.)/nBins),
label=r'%d-%d $\AA$ $\sigma$'%(rebinnedWvlEdges[iBin],
rebinnedWvlEdges[iBin+1]))
axes.plot(intTimes,spectrumSqrts[:,iBin],
c=cm.jet((iBin+1.)/nBins),linestyle='--')
axes.legend(loc='upper left')
示例9: plot_paddle_curve
def plot_paddle_curve(keys, inputfile, outputfile, format='png',
show_fig=False):
"""Plot curves from paddle log and save to outputfile.
:param keys: a list of strings to be plotted, e.g. AvgCost
:param inputfile: a file object for input
:param outputfile: a file object for output
:return: None
"""
pass_pattern = r"Pass=([0-9]*)"
test_pattern = r"Test samples=([0-9]*)"
if not keys:
keys = ['AvgCost']
for k in keys:
pass_pattern += r".*?%s=([0-9e\-\.]*)" % k
test_pattern += r".*?%s=([0-9e\-\.]*)" % k
data = []
test_data = []
compiled_pattern = re.compile(pass_pattern)
compiled_test_pattern = re.compile(test_pattern)
for line in inputfile:
found = compiled_pattern.search(line)
found_test = compiled_test_pattern.search(line)
if found:
data.append([float(x) for x in found.groups()])
if found_test:
test_data.append([float(x) for x in found_test.groups()])
x = numpy.array(data)
x_test = numpy.array(test_data)
if x.shape[0] <= 0:
sys.stderr.write("No data to plot. Exiting!\n")
return
m = len(keys) + 1
for i in xrange(1, m):
pyplot.plot(
x[:, 0],
x[:, i],
color=cm.jet(1.0 * (i - 1) / (2 * m)),
label=keys[i - 1])
if (x_test.shape[0] > 0):
pyplot.plot(
x[:, 0],
x_test[:, i],
color=cm.jet(1.0 - 1.0 * (i - 1) / (2 * m)),
label="Test " + keys[i - 1])
pyplot.xlabel('number of epoch')
pyplot.legend(loc='best')
if show_fig:
pyplot.show()
pyplot.savefig(outputfile, bbox_inches='tight')
pyplot.clf()
示例10: plot_orient_location
def plot_orient_location(data,odata,tracks):
import correlation as corr
omask = np.isfinite(odata['orient'])
goodtracks = np.array([78,95,191,203,322])
ss = 22.
pl.figure()
for goodtrack in goodtracks:
tmask = tracks == goodtrack
fullmask = np.all(np.asarray(zip(omask,tmask)),axis=1)
loc_start = (data['x'][fullmask][0],data['y'][fullmask][0])
orient_start = odata['orient'][fullmask][0]
sc = pl.scatter(
(odata['orient'][fullmask] - orient_start + pi) % twopi,
np.asarray(map(corr.get_norm,
zip([loc_start]*fullmask.sum(),
zip(data['x'][fullmask],data['y'][fullmask]))
))/ss,
#marker='*',
label = 'track {}'.format(goodtrack),
color = cm.jet(1.*goodtrack/max(tracks)))
#color = cm.jet(1.*data['f'][fullmask]/1260.))
print "track",goodtrack
pl.legend()
pl.show()
return True
示例11: visualize_ns_old
def visualize_ns_old(self, term, points=200):
"""
Use randomly selected coordinates instead of most active
"""
if term in self.no.term:
term_index = self.no._ns['features_df'].columns.get_loc(term)
rand_point_inds = np.random.random_integers(0, len(np.squeeze(zip(self.no._ns['mni_coords'].data))), points)
rand_points = np.squeeze(zip(self.no._ns['mni_coords'].data))[rand_point_inds]
weights = []
inds_of_real_points_with_no_fucking_missing_study_ids = []
for rand_point in range(len(rand_points)):
if len(self.no.coord_to_ns_act(rand_points[rand_point].astype(list))) > 0:
inds_of_real_points_with_no_fucking_missing_study_ids.append(rand_point_inds[rand_point])
weights.append(self.no.coord_to_ns_act(rand_points[rand_point].astype(list))[term_index])
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
colors = cm.jet(weights/max(weights))
color_map = cm.ScalarMappable(cmap=cm.jet)
color_map.set_array(weights)
fig.colorbar(color_map)
x = self.no._ns['mni_coords'].data[inds_of_real_points_with_no_fucking_missing_study_ids, 0]
y = self.no._ns['mni_coords'].data[inds_of_real_points_with_no_fucking_missing_study_ids, 1]
z = self.no._ns['mni_coords'].data[inds_of_real_points_with_no_fucking_missing_study_ids, 2]
else:
raise ValueError('Term '+term + ' has not been initialized. '
'Use get_ns_act(' + term + ')')
ax.scatter(x, y, z, c=colors, alpha=0.4)
ax.set_title('Estimation of ' + term)
示例12: _cm_ra_plot
def _cm_ra_plot(data,headings,dates,ave_data,fig_num,colour_col,
y_col,run_ave_points,n_plot_row,n_plot_col,n_plot_num):
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
depth = np.max(data[:,colour_col]) - np.min(data[:,colour_col])
c_map = cm.jet(np.arange(256))
Z = [[0,0],[0,0]]
levels = range(int(np.min(data[:,colour_col])),
int(np.max(data[:,colour_col])),1)
mappl = plt.contourf(Z,levels,cmap=cm.jet)
plt.figure(fig_num)
plt.subplot(n_plot_row,n_plot_col,n_plot_num)
for i in range(len(data)):
plot1 = plt.plot(dates[i],data[i,y_col])
cm_point = np.floor(((np.max(data[:,colour_col]) -
data[i,colour_col]) / depth) * 255)
plt.setp(plot1,linestyle = 'none',marker = '.')
plt.setp(plot1,color = c_map[255 - cm_point,])
plt.grid(True)
plt.ylabel('%s on %s'%(headings[colour_col],headings[y_col]))
# plt.axis([None,None,0,100])
plt.axis([None,None,min(data[:,y_col]),max(data[:,y_col])])
plt.plot(dates,ave_data[:,y_col],'k-')
locs, labels = plt.xticks()
plt.setp(labels, rotation=0)
plt.colorbar(mappl)
示例13: plot_orient_quiver
def plot_orient_quiver(data, odata, mask=None, imfile='', fps=1, savename='', figsize=None):
""" plot_orient_quiver(data, odata, mask=None, imfile='')
"""
import matplotlib.colors as mcolors
import matplotlib.colorbar as mcolorbar
pl.figure(tight_layout=False, figsize=figsize)
if imfile is not None:
bgimage = Im.open(extdir+prefix+'_0001.tif' if imfile is '' else imfile)
pl.imshow(bgimage, cmap=cm.gray, origin='upper')
#pl.quiver(X, Y, U, V, **kw)
if mask is None:
try:
mask = np.all(np.isfinite(odata['orient']), axis=1)
except ValueError:
mask = np.isfinite(odata['orient'])
n = odata.shape[-1] if odata.ndim > 1 else 1
ndex = np.repeat(np.arange(mask.sum()), n)
nz = mcolors.Normalize()
nz.autoscale(data['f'][mask]/fps)
qq = pl.quiver(
data['y'][mask][ndex], data['x'][mask][ndex],
odata['cdisp'][mask][...,1].flatten(), -odata['cdisp'][mask][...,0].flatten(),
color=cm.jet(nz(data['f'][mask]/fps)),
scale=1, scale_units='xy')
#pl.title(', '.join(imfile.split('/')[-1].split('_')[:-1]) if imfile else '')
cax,_ = mcolorbar.make_axes(pl.gca())
cb = mcolorbar.ColorbarBase(cax, cmap=cm.jet, norm=nz)
cb.set_label('time '+('(s)'if fps > 1 else '(frame)'))
if savename:
print "saving to", savename
pl.savefig(savename)
pl.show()
return qq, cb
示例14: plot_m1m2
def plot_m1m2(m1m2_file, plot_pk=None, m1gr=None, m2gr=None,
m1gr_err=None, m2gr_err=None,
m1m2_contour=None,
pk_label_coord=None,
xlim=None, ylim=None, plot_inset=False,
colour=None, line_style=None, m1m2_pbdot_uncorr=None):
n_plot = len(plot_pk)
# Ensure that we are plotting more than 1 parameter:
if(n_plot < 1):
print 'plot_m1m2: Must plot at least one PK parameter. Exiting...'
if(colour == None):
clr = [cm.jet(float(i_plot)/float(n_plot-1)) for i_plot in range(n_plot)]
else:
clr = colour
if(line_style == None):
line_style='-'
# Now, read input m1m2.dat-style file:
try:
f_m1m2 = open(m1m2_file, 'r')
except IOError as (errno, strerror):
if (errno == 2): # file not found
print "IOError ({0}): File".format(errno), m1m2_file, "not found."
else:
print "IOError ({0}): {1}".format(errno, strerror)
return
示例15: __init__
def __init__(self, parent=None, data=None, fnameAbsPath="", enable=True, objectName=""):
super(lines, self).__init__(parent, data, fnameAbsPath, enable, objectName, pgObject="PlotCurveItem")
# Choose symbols from preferences file.
# TODO: read symbols from GUI
self.symbol = lasHelp.readPreference("symbolOrder")[0]
self.symbolSize = int(self.parent.markerSize_spinBox.value())
self.alpha = int(self.parent.markerAlpha_spinBox.value())
self.lineWidth = int(self.parent.lineWidth_spinBox.value())
# Add to the imageStackLayers_model which is associated with the points QTreeView
name = QtGui.QStandardItem(objectName)
name.setEditable(False)
# Add checkbox
thing = QtGui.QStandardItem()
thing.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsEditable | QtCore.Qt.ItemIsUserCheckable)
thing.setCheckState(QtCore.Qt.Checked)
# self.modelItems=(name,thing) #Remove this for now because I have NO CLUE how to get access to the checkbox state
self.modelItems = name
self.model = self.parent.points_Model
self.addToList()
# Set the colour of the object based on how many items are already present
number_of_colors = 6
thisNumber = (self.parent.points_Model.rowCount() - 1) % number_of_colors
cm_subsection = linspace(0, 1, number_of_colors)
colors = [cm.jet(x) for x in cm_subsection]
color = colors[thisNumber]
self.color = [color[0] * 255, color[1] * 255, color[2] * 255]