本文整理汇总了Python中math.pow函数的典型用法代码示例。如果您正苦于以下问题:Python pow函数的具体用法?Python pow怎么用?Python pow使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了pow函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: draw_car
def draw_car(x,y,th,canv):
r = math.sqrt(math.pow(ROBOT_LENGTH,2) + math.pow(ROBOT_WIDTH,2))/2
x = x + 300.0/cm_to_pixels
y = y + 300.0/cm_to_pixels
# top left
phi = th + math.pi/2+ math.atan2(ROBOT_LENGTH,ROBOT_WIDTH)
topleft = (x + r*math.cos(phi),y+r*math.sin(phi))
#top right
phi = th + math.atan2(ROBOT_WIDTH,ROBOT_LENGTH)
topright = (x + r*math.cos(phi),y+r*math.sin(phi))
# bottom left
phi = th + math.pi + math.atan2(ROBOT_WIDTH,ROBOT_LENGTH)
bottomleft = (x + r*math.cos(phi),y+r*math.sin(phi))
# bottom right
phi = th + 3*math.pi/2 + math.atan2(ROBOT_LENGTH,ROBOT_WIDTH)
bottomright = (x + r*math.cos(phi),y+r*math.sin(phi))
canv.create_polygon(topleft[0]*cm_to_pixels,600 - topleft[1]*cm_to_pixels,
bottomleft[0]*cm_to_pixels,600 - bottomleft[1]*cm_to_pixels,
bottomright[0]*cm_to_pixels,600 - bottomright[1]*cm_to_pixels,
topright[0]*cm_to_pixels,600 - topright[1]*cm_to_pixels,
width = 1, outline = 'blue',fill = '')
x1 = x*cm_to_pixels
y1 = y*cm_to_pixels
canv.create_oval(x1-1,600-(y1-1),x1+1,600-(y1+1),outline = 'green',fill = 'green')
示例2: compute_euc_distance
def compute_euc_distance(self, point1, point2):
x_distance = point1[0] - point2[0]
x_distance = math.pow(x_distance, 2)
y_distance = point1[1] - point2[1]
y_distance = math.pow(y_distance, 2)
return math.sqrt(x_distance + y_distance)
示例3: GetSpindownStuff
def GetSpindownStuff(tc, age, l0, b0, emax0, n0):
t = np.logspace(0,math.log10(1000.*age),300)
lumt = []
emaxt = []
bt = []
nt = []
n = 0
for i in t:
l = l0/math.pow(1.+i/tc,2.)
btt = b0*math.sqrt(l/l0)*(1.+0.5*math.sin(0.1*n*3.14))
lumtt = l*(1.+0.5*math.cos(0.1*n*3.14))
emaxtt = emax0*math.pow(l/l0,0.25)*(1.+0.5*math.sin(0.05*n*3.14))
ntt = n0*math.pow(l/l0,0.25)*(1.+0.5*math.cos(0.05*n*3.14))
bt.append([])
bt[n].append(i)
bt[n].append(btt)
lumt.append([])
lumt[n].append(i)
lumt[n].append(lumtt)
emaxt.append([])
emaxt[n].append(i)
emaxt[n].append(emaxtt)
nt.append([])
nt[n].append(i)
nt[n].append(ntt)
n = n+1
return lumt,bt,emaxt,nt
示例4: evaluateLogLikelihood
def evaluateLogLikelihood(params, D, N, M_min, M_max):
alpha = params[0] # extract alpha
# Compute normalisation constant.
c = (1.0 - alpha)/(math.pow(M_max, 1.0-alpha)
- math.pow(M_min, 1.0-alpha))
# return log likelihood.
return N*math.log(c) - alpha*D
示例5: fetch_currencies
async def fetch_currencies(self, params={}):
response = await self.publicGetCurrencyList(params)
currencies = response['response']['entities']
precision = self.precision['amount']
result = {}
for i in range(0, len(currencies)):
currency = currencies[i]
id = currency['currency_id']
code = self.common_currency_code(currency['iso'].upper())
result[code] = {
'id': id,
'code': code,
'name': currency['name'],
'active': True,
'status': 'ok',
'precision': precision,
'limits': {
'amount': {
'min': None,
'max': math.pow(10, precision),
},
'price': {
'min': math.pow(10, -precision),
'max': math.pow(10, precision),
},
'cost': {
'min': None,
'max': None,
},
},
'info': currency,
}
return result
示例6: costFunctionGaussianResponses
def costFunctionGaussianResponses(datapoints, params, nClasses):
responses = np.zeros((nClasses,len(datapoints)))
var = []
for j in range(nClasses):
var.append(getGaussianPdf(params[j][0], params[j][1]))
for j in range(len(datapoints)):
p = [datapoints[j][0], datapoints[j][1]]
for i in range(nClasses):
responses[i,j] = (1/float(nClasses)) * var[i].pdf(p)
responses = responses / np.sum(responses,axis=0)
sum = 0
for i in range(nClasses):
withinVariance = 0
for j in range(0, len(datapoints)-1):
difference = responses[i,j+1] - responses[i,j]
differenceSquared = math.pow(difference, 2)
withinVariance += differenceSquared
v = math.pow(np.std(responses[i]), 2)
betweenVariance = math.pow(v,2)
sum += (withinVariance/float(betweenVariance))
return sum
示例7: gridToGeodetic
def gridToGeodetic(self, north, east):
"""
Transformation from grid coordinates to geodetic coordinates.
@param north (corresponds to X in RT 90 and N in SWEREF 99.)
@param east (corresponds to Y in RT 90 and E in SWEREF 99.)
@return (latitude, longitude)
"""
if (self._initialized == False):
return None
deg_to_rad = math.pi / 180
lambda_zero = self._central_meridian * deg_to_rad
xi = (north - self._false_northing) / (self._scale * self._a_roof)
eta = (east - self._false_easting) / (self._scale * self._a_roof)
xi_prim = xi - \
self._delta1*math.sin(2.0*xi) * math.cosh(2.0*eta) - \
self._delta2*math.sin(4.0*xi) * math.cosh(4.0*eta) - \
self._delta3*math.sin(6.0*xi) * math.cosh(6.0*eta) - \
self._delta4*math.sin(8.0*xi) * math.cosh(8.0*eta)
eta_prim = eta - \
self._delta1*math.cos(2.0*xi) * math.sinh(2.0*eta) - \
self._delta2*math.cos(4.0*xi) * math.sinh(4.0*eta) - \
self._delta3*math.cos(6.0*xi) * math.sinh(6.0*eta) - \
self._delta4*math.cos(8.0*xi) * math.sinh(8.0*eta)
phi_star = math.asin(math.sin(xi_prim) / math.cosh(eta_prim))
delta_lambda = math.atan(math.sinh(eta_prim) / math.cos(xi_prim))
lon_radian = lambda_zero + delta_lambda
lat_radian = phi_star + math.sin(phi_star) * math.cos(phi_star) * \
(self._Astar + \
self._Bstar*math.pow(math.sin(phi_star), 2) + \
self._Cstar*math.pow(math.sin(phi_star), 4) + \
self._Dstar*math.pow(math.sin(phi_star), 6))
lat = lat_radian * 180.0 / math.pi
lon = lon_radian * 180.0 / math.pi
return (lat, lon)
示例8: test_math_functions
def test_math_functions(self):
df = self.sc.parallelize([Row(a=i, b=2 * i) for i in range(10)]).toDF()
from pyspark.sql import functions
import math
def get_values(l):
return [j[0] for j in l]
def assert_close(a, b):
c = get_values(b)
diff = [abs(v - c[k]) < 1e-6 for k, v in enumerate(a)]
return sum(diff) == len(a)
assert_close([math.cos(i) for i in range(10)],
df.select(functions.cos(df.a)).collect())
assert_close([math.cos(i) for i in range(10)],
df.select(functions.cos("a")).collect())
assert_close([math.sin(i) for i in range(10)],
df.select(functions.sin(df.a)).collect())
assert_close([math.sin(i) for i in range(10)],
df.select(functions.sin(df['a'])).collect())
assert_close([math.pow(i, 2 * i) for i in range(10)],
df.select(functions.pow(df.a, df.b)).collect())
assert_close([math.pow(i, 2) for i in range(10)],
df.select(functions.pow(df.a, 2)).collect())
assert_close([math.pow(i, 2) for i in range(10)],
df.select(functions.pow(df.a, 2.0)).collect())
assert_close([math.hypot(i, 2 * i) for i in range(10)],
df.select(functions.hypot(df.a, df.b)).collect())
示例9: pythag_pos_diff
def pythag_pos_diff(objPosArray1,objPosArray2):
#calculates the pythagorian position difference between two n-dimensional position arrays
pythagSum=0
for l in range(len(objPosArray1)):
pythagSum+=math.pow(objPosArray1[l]-objPosArray2[l],2)
return math.pow(pythagSum,1.0/2.0)
示例10: testFixedNonUniform
def testFixedNonUniform(self):
"""Sets up the quantile summary op test as follows.
Creates array dividing range [0, 1] to 1<<16 elements equally spaced
with weight same as the value.
"""
dense_float_tensor_0 = constant_op.constant(
[(1.0 * i) / math.pow(2.0, 16)
for i in range(0, int(math.pow(2, 16)) + 1)])
example_weights = constant_op.constant(
[(1.0 * i) / math.pow(2.0, 16)
for i in range(0, int(math.pow(2, 16)) + 1)])
config = self._gen_config(0.1, 10)
with self.test_session():
dense_buckets, _ = quantile_ops.quantile_buckets(
[dense_float_tensor_0], [], [], [],
example_weights=example_weights,
dense_config=[config],
sparse_config=[])
self.assertAllClose(
[0] + [math.sqrt((i + 1.0) / 10) for i in range(0, 10)],
dense_buckets[0].eval(),
atol=0.1)
示例11: getPointDist
def getPointDist(self, pt):
assert(self.face is not None)
# fist, get my position
p = PoseStamped()
p.header.frame_id = "base_link"
p.header.stamp = rospy.Time.now() - rospy.Duration(0.5)
p.pose.position.x = 0
p.pose.position.y = 0
p.pose.position.z = 0
p.pose.orientation.x = 0
p.pose.orientation.y = 0
p.pose.orientation.z = 0
p.pose.orientation.w = 1
try:
self._tf.waitForTransform(p.header.frame_id, self._robot_frame, p.header.stamp, rospy.Duration(2))
p = self._tf.transformPose(self._robot_frame, p)
except:
rospy.logerr("TF error!")
return None
return sqrt(pow(p.pose.position.x - pt.point.x, 2) + pow(p.pose.position.y - pt.point.y, 2) + pow(p.pose.position.z - pt.point.z, 2))
示例12: get_close_matches
def get_close_matches(term, fields, fuzziness=0.4, key=None):
import math
import difflib
def _ratio(a, b):
return difflib.SequenceMatcher(None, a, b).ratio()
term = term.lower()
matches = []
for field in fields:
fld = field if key is None else key(field)
if term == fld:
matches.append((field, 1.0))
else:
name = fld.lower()
r = _ratio(term, name)
if name.startswith(term):
r = math.pow(r, 0.3)
elif term in name:
r = math.pow(r, 0.5)
if r >= (1.0 - fuzziness):
matches.append((field, min(r, 0.99)))
return sorted(matches, key=lambda x: -x[1])
示例13: checkio
def checkio(strdata):
strdata = strdata.lower()
alpha = [ chr(x) for x in range( ord('a'), ord('z')+1) ]
for i in range(2, 36):
radix = i
bPassCheck1 = True
for j in range(0, len(strdata)):
if strdata[j].isdigit() and int( strdata[j] ) < radix:
continue
elif strdata[j].isalpha() and (10 + ord(strdata[j]) -ord('a') )< radix:
continue
else:
bPassCheck1 = False
continue
if bPassCheck1 == True:
mysum = 0
for k in range(0,len(strdata)):
if strdata[k].isdigit():
mysum = mysum + math.pow( radix, len(strdata)-k-1)*int(strdata[k])
elif strdata[k].isalpha():
mysum = mysum + math.pow( radix, len(strdata)-k-1)*int(ord(strdata[k])-ord('a')+10)
if mysum%(radix-1) == 0:
print(radix)
return radix
print(0)
return 0
示例14: DeltaVz
def DeltaVz(z):
"""Calculates the density contrast of a virialised region S{Delta}V(z),
assuming a S{Lambda}CDM-type flat cosmology. See, e.g., Bryan & Norman
1998 (ApJ, 495, 80).
@type z: float
@param z: redshift
@rtype: float
@return: density contrast of a virialised region at redshift z
@note: If OMEGA_M0+OMEGA_L0 is not equal to 1, this routine exits and
prints an error
message to the console.
"""
OMEGA_K = 1.0 - OMEGA_M0 - OMEGA_L0
if OMEGA_K == 0.0:
Omega_Mz = OmegaMz(z)
deltaVz = (18.0 * math.pow(math.pi, 2) + 82.0 *
(Omega_Mz - 1.0) - 39.0 * math.pow(Omega_Mz - 1, 2))
return deltaVz
else:
raise Exception("cosmology is NOT flat.")
示例15: gradient
def gradient(image, mask_type='sobel'):
indice_mascara = {
"sobelx":[[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]],
"sobely":[[1.0, 2.0, 1.0], [0.0, 0.0, 0.0], [-1.0, -2.0, -1.0]],
"prewittx":[[-1.0, 0.0, 1.0], [-1.0, 0.0, 1.0], [-1.0, 0.0, 1.0]],
"prewitty":[[1.0, 1.0, 1.0], [0.0, 0.0, 0.0], [-1.0, -1.0, -1.0]]
}
pic_copy = (image.copy()).load()
pic = image.load()
kernelx = indice_mascara[mask_type+'x']
kernely = indice_mascara[mask_type+'y']
max_value = 0
for i in range(image.size[0]):
for j in range(image.size[1]):
gx, gy = (0.0, 0.0)
kernel_len = len(kernelx[0])
kernel_pos = 0
for h in range(i-1, i+2):
for l in range(j-1, j+2):
if h >= 0 and l >= 0 and h < image.size[0] and l < image.size[1]:
pixel = pic_copy[h, l]
pixel = max(pixel)/len(pixel)
gx += pixel*kernelx[int(kernel_pos/3)][kernel_pos%3]
gy += pixel*kernely[int(kernel_pos/3)][kernel_pos%3]
kernel_pos += 1
gradiente = int(math.sqrt(math.pow(gx, 2) + math.pow(gy, 2)))
pic[i, j] = tuple([gradiente]*3)
if gradiente > max_value:
max_value = gradiente
return max_value
开发者ID:ARGHZ,项目名称:Vision_computacional,代码行数:33,代码来源:circle+(Copia+conflictiva+de+juan-laptop+2013-03-07).py