本文整理汇总了Python中main.models.UserLog.is_enabled方法的典型用法代码示例。如果您正苦于以下问题:Python UserLog.is_enabled方法的具体用法?Python UserLog.is_enabled怎么用?Python UserLog.is_enabled使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类main.models.UserLog
的用法示例。
在下文中一共展示了UserLog.is_enabled方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: query_logs
# 需要导入模块: from main.models import UserLog [as 别名]
# 或者: from main.models.UserLog import is_enabled [as 别名]
def query_logs(users, items, logtype, logdict):
"""
Get a specified subset of logs for a particular set of users for either exercises or videos.
users: list of users to query against.
items: list of either exercises of videos to query.
logtype: video or exercise - in future this could be expanded to query activity logs too.
logdict: user keyed dictionary of logs (presumed to be empty by this code)
"""
if logtype == "exercise":
all_logs = ExerciseLog.objects.filter(user__in=users, exercise_id__in=items).values(
'user', 'complete', 'exercise_id', 'attempts', 'points', 'struggling', 'completion_timestamp', 'streak_progress').order_by('completion_timestamp')
elif logtype == "video":
all_logs = VideoLog.objects.filter(user__in=users, video_id__in=items).values(
'user', 'complete', 'video_id', 'total_seconds_watched', 'completion_timestamp', 'points').order_by('completion_timestamp')
elif logtype == "activity" and UserLog.is_enabled():
all_logs = UserLog.objects.filter(user__in=users).values(
'user', 'last_active_datetime', 'total_seconds').order_by('last_active_datetime')
elif logtype == "summaryactivity" and UserLog.is_enabled():
all_logs = UserLogSummary.objects.filter(user__in=users).values(
'user', 'device', 'total_seconds').order_by('end_datetime')
else:
assert False, "Unknown log type: '%s'" % logtype # indicates a programming error
for log in all_logs:
logdict[log['user']].append(log)
return logdict
示例2: test_query_login_student
# 需要导入模块: from main.models import UserLog [as 别名]
# 或者: from main.models.UserLog import is_enabled [as 别名]
def test_query_login_student(self):
"""Check the # of queries when logging in as a student."""
student = FacilityUser(is_teacher=False, username="s1", facility=self.facility)
passwd = self._gen_valid_password()
student.set_password(passwd)
student.save()
with self.assertNumQueries(39 + 3*UserLog.is_enabled()):
self.browser_login_student("s1", passwd, self.facility)
示例3: test_query_login_teacher
# 需要导入模块: from main.models import UserLog [as 别名]
# 或者: from main.models.UserLog import is_enabled [as 别名]
def test_query_login_teacher(self):
"""Check the # of queries when logging in as a teacher."""
teacher = FacilityUser(is_teacher=True, username="t1", facility=self.facility)
passwd = self._gen_valid_password()
teacher.set_password(passwd)
teacher.save()
with self.assertNumQueries(39 + 3*UserLog.is_enabled()):
self.browser_login_teacher("t1", passwd, self.facility)
示例4: test_query_logout_student
# 需要导入模块: from main.models import UserLog [as 别名]
# 或者: from main.models.UserLog import is_enabled [as 别名]
def test_query_logout_student(self):
""""""
self.test_query_login_student()
with self.assertNumQueries(14 + 11*UserLog.is_enabled()):
self.browser_logout_user()
示例5: test_query_logout_teacher
# 需要导入模块: from main.models import UserLog [as 别名]
# 或者: from main.models.UserLog import is_enabled [as 别名]
def test_query_logout_teacher(self):
""""""
self.test_query_login_teacher()
with self.assertNumQueries(16 + 11*UserLog.is_enabled()):
self.browser_logout_user()
示例6: test_query_logout_admin
# 需要导入模块: from main.models import UserLog [as 别名]
# 或者: from main.models.UserLog import is_enabled [as 别名]
def test_query_logout_admin(self):
""""""
self.test_query_login_admin()
with self.assertNumQueries(17 + 0*UserLog.is_enabled()):
self.browser_logout_user()
示例7: test_query_login_admin
# 需要导入模块: from main.models import UserLog [as 别名]
# 或者: from main.models.UserLog import is_enabled [as 别名]
def test_query_login_admin(self):
with self.assertNumQueries(38 + 0*UserLog.is_enabled()):
self.browser_login_admin()
示例8: generate_fake_exercise_logs
# 需要导入模块: from main.models import UserLog [as 别名]
# 或者: from main.models.UserLog import is_enabled [as 别名]
#.........这里部分代码省略.........
for user in facility_user:
(elogs, ulogs) = generate_fake_exercise_logs(facility_user=user, topics=[topic], start_date=start_date)
exercise_logs.append(elogs)
user_logs.append(ulogs)
# Actually generate!
else:
# Get (or create) user type
try:
user_settings = json.loads(facility_user.notes)
except:
user_settings = sample_user_settings()
facility_user.notes = json.dumps(user_settings)
facility_user.save()
date_diff_started = datetime.timedelta(seconds=datediff(date_diff, units="seconds") * user_settings["time_in_program"]) # when this user started in the program, relative to NOW
for topic in topics:
# Get all exercises related to the topic
exercises = get_topic_exercises(topic_id=topic)
# Problem:
# Not realistic for students to have lots of unfinished exercises.
# If they start them, they tend to get stuck, right?
#
# So, need to make it more probable that they will finish an exercise,
# and less probable that they start one.
#
# What we need is P(streak|started), not P(streak)
# Probability of doing any particular exercise
p_exercise = probability_of(qty="exercise", user_settings=user_settings)
logging.debug("# exercises: %d; p(exercise)=%4.3f, user settings: %s\n" % (len(exercises), p_exercise, json.dumps(user_settings)))
# of exercises is related to
for j, exercise in enumerate(exercises):
if random.random() > p_exercise:
continue
# Probability of completing this exercise, and .. proportion of attempts
p_completed = probability_of(qty="completed", user_settings=user_settings)
p_attempts = probability_of(qty="attempts", user_settings=user_settings)
attempts = int(random.random() * p_attempts * 30 + 10) # always enough to have completed
completed = (random.random() < p_completed)
if completed:
streak_progress = 100
else:
streak_progress = max(0, min(90, random.gauss(100 * user_settings["speed_of_learning"], 20)))
streak_progress = int(floor(streak_progress / 10.)) * 10
points = streak_progress / 10 * 12 if completed else 0 # only get points when you master.
# Choose a rate of exercises, based on their effort level and speed of learning.
# Compute the latest possible start time.
# Then sample a start time between their start time
# and the latest possible start_time
rate_of_exercises = 0.66 * user_settings["effort_level"] + 0.33 * user_settings["speed_of_learning"] # exercises per day
time_for_attempts = min(datetime.timedelta(days=rate_of_exercises * attempts), date_diff_started) # protect with min
time_delta_completed = datetime.timedelta(seconds=random.randint(int(datediff(time_for_attempts, units="seconds")), int(datediff(date_diff_started, units="seconds"))))
date_completed = datetime.datetime.now() - time_delta_completed
# Always create new
logging.info("Creating exercise log: %-12s: %-25s (%d points, %d attempts, %d%% streak on %s)" % (
facility_user.first_name,
exercise["name"],
points,
attempts,
streak_progress,
date_completed,
))
try:
elog = ExerciseLog.objects.get(user=facility_user, exercise_id=exercise["name"])
except ExerciseLog.DoesNotExist:
elog = ExerciseLog(
user=facility_user,
exercise_id=exercise["name"],
attempts=int(attempts),
streak_progress=streak_progress,
points=int(points),
complete=completed,
completion_timestamp=date_completed,
)
elog.save(update_userlog=False)
# For now, make all attempts on an exercise into a single UserLog.
seconds_per_attempt = 10 * (1 + user_settings["speed_of_learning"] * random.random())
time_to_navigate = 15 * (0.5 + random.random()) #between 7.5s and 22.5s
time_to_logout = 5 * (0.5 + random.random()) # between 2.5 and 7.5s
if UserLog.is_enabled():
ulog = UserLog(
user=facility_user,
activity_type=1,
start_datetime = date_completed - datetime.timedelta(seconds=int(attempts * seconds_per_attempt + time_to_navigate)),
end_datetime = date_completed + datetime.timedelta(seconds=time_to_logout),
last_active_datetime = date_completed,
)
ulog.save()
user_logs.append(ulog)
exercise_logs.append(elog)
return (exercise_logs, user_logs)
示例9: compute_data
# 需要导入模块: from main.models import UserLog [as 别名]
# 或者: from main.models.UserLog import is_enabled [as 别名]
def compute_data(data_types, who, where):
"""
Compute the data in "data_types" for each user in "who", for the topics selected by "where"
who: list of users
where: topic_path
data_types can include:
pct_mastery
effort
attempts
"""
# None indicates that the data hasn't been queried yet.
# We'll query it on demand, for efficiency
topics = None
exercises = None
videos = None
# Initialize an empty dictionary of data, video logs, exercise logs, for each user
data = OrderedDict(zip([w.id for w in who], [dict() for i in range(len(who))])) # maintain the order of the users
vid_logs = dict(zip([w.id for w in who], [[] for i in range(len(who))]))
ex_logs = dict(zip([w.id for w in who], [[] for i in range(len(who))]))
if UserLog.is_enabled():
activity_logs = dict(zip([w.id for w in who], [[] for i in range(len(who))]))
# Set up queries (but don't run them), so we have really easy aliases.
# Only do them if they haven't been done yet (tell this by passing in a value to the lambda function)
# Topics: topics.
# Exercises: names (ids for ExerciseLog objects)
# Videos: video_id (ids for VideoLog objects)
# This lambda partial creates a function to return all items with a particular path from the NODE_CACHE.
search_fun_single_path = partial(lambda t, p: t["path"].startswith(p), p=tuple(where))
# This lambda partial creates a function to return all items with paths matching a list of paths from NODE_CACHE.
search_fun_multi_path = partial(lambda ts, p: any([t["path"].startswith(p) for t in ts]), p=tuple(where))
# Functions that use the functions defined above to return topics, exercises, and videos based on paths.
query_topics = partial(lambda t, sf: t if t is not None else [t[0]["id"] for t in filter(sf, get_node_cache('Topic').values())], sf=search_fun_single_path)
query_exercises = partial(lambda e, sf: e if e is not None else [ex[0]["id"] for ex in filter(sf, get_node_cache('Exercise').values())], sf=search_fun_multi_path)
query_videos = partial(lambda v, sf: v if v is not None else [vid[0]["id"] for vid in filter(sf, get_node_cache('Video').values())], sf=search_fun_multi_path)
# No users, don't bother.
if len(who) > 0:
# Query out all exercises, videos, exercise logs, and video logs before looping to limit requests.
# This means we could pull data for n-dimensional coach report displays with the same number of requests!
# Note: User activity is polled inside the loop, to prevent possible slowdown for exercise and video reports.
exercises = query_exercises(exercises)
videos = query_videos(videos)
if exercises:
ex_logs = query_logs(data.keys(), exercises, "exercise", ex_logs)
if videos:
vid_logs = query_logs(data.keys(), videos, "video", vid_logs)
for data_type in (data_types if not hasattr(data_types, "lower") else [data_types]): # convert list from string, if necessary
if data_type in data[data.keys()[0]]: # if the first user has it, then all do; no need to calc again.
continue
#
# These are summary stats: you only get one per user
#
if data_type == "pct_mastery":
# Efficient query out, spread out to dict
for user in data.keys():
data[user][data_type] = 0 if not ex_logs[user] else 100. * sum([el['complete'] for el in ex_logs[user]]) / float(len(exercises))
elif data_type == "effort":
if "ex:attempts" in data[data.keys()[0]] and "vid:total_seconds_watched" in data[data.keys()[0]]:
# exercises and videos would be initialized already
for user in data.keys():
avg_attempts = 0 if len(exercises) == 0 else sum(data[user]["ex:attempts"].values()) / float(len(exercises))
avg_video_points = 0 if len(videos) == 0 else sum(data[user]["vid:total_seconds_watched"].values()) / float(len(videos))
data[user][data_type] = 100. * (0.5 * avg_attempts / 10. + 0.5 * avg_video_points / 750.)
else:
data_types += ["ex:attempts", "vid:total_seconds_watched", "effort"]
#
# These are detail stats: you get many per user
#
# Just querying out data directly: Video
elif data_type.startswith("vid:") and data_type[4:] in [f.name for f in VideoLog._meta.fields]:
for user in data.keys():
data[user][data_type] = OrderedDict([(v['video_id'], v[data_type[4:]]) for v in vid_logs[user]])
# Just querying out data directly: Exercise
elif data_type.startswith("ex:") and data_type[3:] in [f.name for f in ExerciseLog._meta.fields]:
for user in data.keys():
data[user][data_type] = OrderedDict([(el['exercise_id'], el[data_type[3:]]) for el in ex_logs[user]])
# User Log Queries
elif data_type.startswith("user:") and data_type[5:] in [f.name for f in UserLog._meta.fields] and UserLog.is_enabled():
activity_logs = query_logs(data.keys(), "", "activity", activity_logs)
for user in data.keys():
#.........这里部分代码省略.........
示例10: _
# 需要导入模块: from main.models import UserLog [as 别名]
# 或者: from main.models.UserLog import is_enabled [as 别名]
{"key": "ex:attempts", "name": _("Average attempts"), "type": "number", "description": _("Number of times submitting an answer to an exercise.")},
{"key": "ex:streak_progress", "name": _("Average streak"), "type": "number", "description": _("Maximum number of consecutive correct answers on an exercise.")},
{"key": "ex:points", "name": _("Exercise points"), "type": "number", "description": _("[Pointless at the moment; tracks mastery linearly]")},
{ "key": "ex:completion_timestamp", "name": _("Time exercise completed"),"type": "datetime", "description": _("Day/time the exercise was completed.") },
{"key": "vid:points", "name": _("Video points"), "type": "number", "description": _("Points earned while watching a video (750 max / video).")},
{ "key": "vid:total_seconds_watched","name": _("Video time"), "type": "number", "description": _("Total seconds spent watching a video.") },
{ "key": "vid:completion_timestamp", "name": _("Time video completed"),"type": "datetime", "description": _("Day/time the video was completed.") },
]
user_log_stats_dict = [
{ "key": "usersum:total_seconds", "name": _("Time Active (s)"), "type": "number", "description": _("Total time spent actively logged in.")},
{ "key": "user:total_seconds", "name": _("Active Time Per Login"), "type": "number", "description": _("Duration of each login session."), "noscatter": True, "timeline": True},
{ "key": "user:last_active_datetime", "name": _("Time Session Completed"),"type": "datetime", "description": _("Day/time the login session finished.")},
]
if UserLog.is_enabled():
stats_dict.extend(user_log_stats_dict)
def get_data_form(request, *args, **kwargs):
"""Get the basic data form, by combining information from
keyword arguments and the request.REQUEST object.
Along the way, check permissions to make sure whatever's being requested is OK.
Request objects get priority over keyword args.
"""
assert not args, "all non-request args should be keyword args"
# Pull the form parameters out of the request or
data = dict()
# Default to empty string, as it makes template handling cleaner later.
for field in ["facility", "group", "user", "xaxis", "yaxis"]: