当前位置: 首页>>代码示例>>Python>>正文


Python ExerciseLog.calc_points方法代码示例

本文整理汇总了Python中main.models.ExerciseLog.calc_points方法的典型用法代码示例。如果您正苦于以下问题:Python ExerciseLog.calc_points方法的具体用法?Python ExerciseLog.calc_points怎么用?Python ExerciseLog.calc_points使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在main.models.ExerciseLog的用法示例。


在下文中一共展示了ExerciseLog.calc_points方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: update_all_central_callback

# 需要导入模块: from main.models import ExerciseLog [as 别名]
# 或者: from main.models.ExerciseLog import calc_points [as 别名]
def update_all_central_callback(request):
    """
    Callback after authentication.

    Parses out the request token verification.
    Then finishes the request by getting an auth token.
    """
    if not "ACCESS_TOKEN" in request.session:
        finish_auth(request)

    exercises = get_api_resource(request, "/api/v1/user/exercises")
    videos = get_api_resource(request, "/api/v1/user/videos")
    node_cache = get_node_cache()

    # Collate videos
    video_logs = []
    for video in videos:
        # Assume that KA videos are all english-language, not dubbed (for now)
        video_id = youtube_id = video.get('video', {}).get('youtube_id', "")

        # Only save videos with progress
        if not video.get('seconds_watched', None):
            continue

        # Only save video logs for videos that we recognize.
        if video_id not in node_cache["Video"]:
            logging.warn("Skipping unknown video %s" % video_id)
            continue

        try:
            video_logs.append({
                "video_id": video_id,
                "youtube_id": youtube_id,
                "total_seconds_watched": video['seconds_watched'],
                "points": VideoLog.calc_points(video['seconds_watched'], video['duration']),
                "complete": video['completed'],
                "completion_timestamp": convert_ka_date(video['last_watched']) if video['completed'] else None,
            })
            logging.debug("Got video log for %s: %s" % (video_id, video_logs[-1]))
        except KeyError:  #
            logging.error("Could not save video log for data with missing values: %s" % video)

    # Collate exercises
    exercise_logs = []
    for exercise in exercises:
        # Only save exercises that have any progress.
        if not exercise.get('last_done', None):
            continue

        # Only save video logs for videos that we recognize.
        slug = exercise.get('exercise', "")
        if slug not in node_cache['Exercise']:
            logging.warn("Skipping unknown video %s" % slug)
            continue

        try:
            completed = exercise['streak'] >= 10
            basepoints = node_cache['Exercise'][slug][0]['basepoints']
            exercise_logs.append({
                "exercise_id": slug,
                "streak_progress": min(100, 100 * exercise['streak']/10),  # duplicates logic elsewhere
                "attempts": exercise['total_done'],
                "points": ExerciseLog.calc_points(basepoints, ncorrect=exercise['streak'], add_randomness=False),  # no randomness when importing from KA
                "complete": completed,
                "attempts_before_completion": exercise['total_done'] if not exercise['practiced'] else None,  #can't figure this out if they practiced after mastery.
                "completion_timestamp": convert_ka_date(exercise['proficient_date']) if completed else None,
            })
            logging.debug("Got exercise log for %s: %s" % (slug, exercise_logs[-1]))
        except KeyError:
            logging.error("Could not save exercise log for data with missing values: %s" % exercise)

    # POST the data back to the distributed server
    try:

        dthandler = lambda obj: obj.isoformat() if isinstance(obj, datetime.datetime) else None
        logging.debug("POST'ing to %s" % request.session["distributed_callback_url"])
        response = requests.post(
            request.session["distributed_callback_url"],
            cookies={ "csrftoken": request.session["distributed_csrf_token"] },
            data = {
                "csrfmiddlewaretoken": request.session["distributed_csrf_token"],
                "video_logs": json.dumps(video_logs, default=dthandler),
                "exercise_logs": json.dumps(exercise_logs, default=dthandler),
                "user_id": request.session["distributed_user_id"],
            }
        )
        logging.debug("Response (%d): %s" % (response.status_code, response.content))
    except requests.exceptions.ConnectionError as e:
        return HttpResponseRedirect(set_query_params(request.session["distributed_redirect_url"], {
            "message_type": "error",
            "message": _("Could not connect to your KA Lite installation to share Khan Academy data."),
            "message_id": "id_khanload",
        }))
    except Exception as e:
        return HttpResponseRedirect(set_query_params(request.session["distributed_redirect_url"], {
            "message_type": "error",
            "message": _("Failure to send data to your KA Lite installation: %s") % e,
            "message_id": "id_khanload",
        }))

#.........这里部分代码省略.........
开发者ID:aronasorman,项目名称:ka-lite-central,代码行数:103,代码来源:api_views.py

示例2: update_all_central_callback

# 需要导入模块: from main.models import ExerciseLog [as 别名]
# 或者: from main.models.ExerciseLog import calc_points [as 别名]
def update_all_central_callback(request):
    """
    Callback after authentication.

    Parses out the request token verification.
    Then finishes the request by getting an auth token.
    """
    if not "ACCESS_TOKEN" in request.session:
        finish_auth(request)
    
    exercises = get_api_resource(request, "/api/v1/user/exercises")
    videos = get_api_resource(request, "/api/v1/user/videos")

    # Save videos
    video_logs = []
    for video in videos:
        youtube_id =video.get('video', {}).get('youtube_id', "")

        # Only save videos with progress
        if not video.get('seconds_watched', None):
            continue

        # Only save video logs for videos that we recognize.
        if youtube_id not in ID2SLUG_MAP:
            logging.warn("Skipping unknown video %s" % youtube_id)
            continue

        try:
            video_logs.append({
                "youtube_id": youtube_id,
                "total_seconds_watched": video['seconds_watched'],
                "points": VideoLog.calc_points(video['seconds_watched'], video['duration']),
                "complete": video['completed'],
                "completion_timestamp": convert_ka_date(video['last_watched']) if video['completed'] else None,
            })
            logging.debug("Got video log for %s: %s" % (youtube_id, video_logs[-1]))
        except KeyError:  # 
            logging.error("Could not save video log for data with missing values: %s" % video)

    # Save exercises
    exercise_logs = []
    for exercise in exercises:
        # Only save exercises that have any progress.
        if not exercise.get('last_done', None):
            continue

        # Only save video logs for videos that we recognize.
        slug = exercise.get('exercise', "")
        if slug not in NODE_CACHE['Exercise']:
            logging.warn("Skipping unknown video %s" % slug)
            continue

        try:
            completed = exercise['streak'] >= 10
            basepoints = NODE_CACHE['Exercise'][slug]['basepoints']
            exercise_logs.append({
                "exercise_id": slug,
                "streak_progress": min(100, 100 * exercise['streak']/10),  # duplicates logic elsewhere
                "attempts": exercise['total_done'],
                "points": ExerciseLog.calc_points(basepoints, ncorrect=exercise['streak'], add_randomness=False),  # no randomness when importing from KA
                "complete": completed,
                "attempts_before_completion": exercise['total_done'] if not exercise['practiced'] else None,  #can't figure this out if they practiced after mastery.
                "completion_timestamp": convert_ka_date(exercise['proficient_date']) if completed else None,
            })
            logging.debug("Got exercise log for %s: %s" % (slug, exercise_logs[-1]))
        except KeyError:
            logging.error("Could not save exercise log for data with missing values: %s" % exercise)

    # POST the data back to the distributed server
    dthandler = lambda obj: obj.isoformat() if isinstance(obj, datetime.datetime) else None
    logging.debug("POST'ing to %s" % request.session["distributed_callback_url"])
    response = requests.post(
        request.session["distributed_callback_url"],
        cookies={ "csrftoken": request.session["distributed_csrf_token"] },
        data = {
            "csrfmiddlewaretoken": request.session["distributed_csrf_token"],
            "video_logs": json.dumps(video_logs, default=dthandler),
            "exercise_logs": json.dumps(exercise_logs, default=dthandler),
            "user_id": request.session["distributed_user_id"],
        }
    )
    logging.debug("Response (%d): %s" % (response.status_code, response.content))
    message = json.loads(response.content)

    # If something broke on the distribute d server, we are SCREWED.
    #   For now, just show the error to users.
    #
    # Ultimately, we have a message, would like to share with the distributed server.
#    if response.status_code != 200:
#        return HttpResponseServerError(response.content)

    return HttpResponseRedirect(request.session["distributed_redirect_url"] + "?message_type=%s&message=%s&message_id=id_khanload" % (message.keys()[0], message.values()[0]))
开发者ID:Eleonore9,项目名称:ka-lite,代码行数:94,代码来源:api_views.py


注:本文中的main.models.ExerciseLog.calc_points方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。