当前位置: 首页>>代码示例>>Python>>正文


Python models.InstructorTask类代码示例

本文整理汇总了Python中lms.djangoapps.instructor_task.models.InstructorTask的典型用法代码示例。如果您正苦于以下问题:Python InstructorTask类的具体用法?Python InstructorTask怎么用?Python InstructorTask使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了InstructorTask类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: on_failure

    def on_failure(self, exc, task_id, args, kwargs, einfo):
        """
        Update InstructorTask object corresponding to this task with info about failure.

        Fetches and updates exception and traceback information on failure.

        If an exception is raised internal to the task, it is caught by celery and provided here.
        The information is recorded in the InstructorTask object as a JSON-serialized dict
        stored in the task_output column.  It contains the following keys:

               'exception':  type of exception object
               'message': error message from exception object
               'traceback': traceback information (truncated if necessary)

        Note that there is no way to record progress made within the task (e.g. attempted,
        succeeded, etc.) when such failures occur.
        """
        TASK_LOG.debug(u'Task %s: failure returned', task_id)
        entry_id = args[0]
        try:
            entry = InstructorTask.objects.get(pk=entry_id)
        except InstructorTask.DoesNotExist:
            # if the InstructorTask object does not exist, then there's no point
            # trying to update it.
            TASK_LOG.error(u"Task (%s) has no InstructorTask object for id %s", task_id, entry_id)
        else:
            TASK_LOG.warning(u"Task (%s) failed", task_id, exc_info=True)
            entry.task_output = InstructorTask.create_output_for_failure(einfo.exception, einfo.traceback)
            entry.task_state = FAILURE
            entry.save_now()
开发者ID:digitalsatori,项目名称:edx-platform,代码行数:30,代码来源:tasks_base.py

示例2: _reserve_task

def _reserve_task(course_id, task_type, task_key, task_input, requester):
    """
    Creates a database entry to indicate that a task is in progress.

    Throws AlreadyRunningError if the task is already in progress.
    Includes the creation of an arbitrary value for task_id, to be
    submitted with the task call to celery.

    Note that there is a chance of a race condition here, when two users
    try to run the same task at almost exactly the same time.  One user
    could be after the check and before the create when the second user
    gets to the check.  At that point, both users are able to run their
    tasks simultaneously.  This is deemed a small enough risk to not
    put in further safeguards.
    """

    if _task_is_running(course_id, task_type, task_key):
        log.warning("Duplicate task found for task_type %s and task_key %s", task_type, task_key)
        error_message = generate_already_running_error_message(task_type)
        raise AlreadyRunningError(error_message)

    try:
        most_recent_id = InstructorTask.objects.latest('id').id
    except InstructorTask.DoesNotExist:
        most_recent_id = "None found"
    finally:
        log.warning(
            "No duplicate tasks found: task_type %s, task_key %s, and most recent task_id = %s",
            task_type,
            task_key,
            most_recent_id
        )

    # Create log entry now, so that future requests will know it's running.
    return InstructorTask.create(course_id, task_type, task_key, task_input, requester)
开发者ID:cmscom,项目名称:edx-platform,代码行数:35,代码来源:api_helper.py

示例3: initialize_subtask_info

def initialize_subtask_info(entry, action_name, total_num, subtask_id_list):
    """
    Store initial subtask information to InstructorTask object.

    The InstructorTask's "task_output" field is initialized.  This is a JSON-serialized dict.
    Counters for 'attempted', 'succeeded', 'failed', 'skipped' keys are initialized to zero,
    as is the 'duration_ms' value.  A 'start_time' is stored for later duration calculations,
    and the total number of "things to do" is set, so the user can be told how much needs to be
    done overall.  The `action_name` is also stored, to help with constructing more readable
    task_progress messages.

    The InstructorTask's "subtasks" field is also initialized.  This is also a JSON-serialized dict.
    Keys include 'total', 'succeeded', 'retried', 'failed', which are counters for the number of
    subtasks.  'Total' is set here to the total number, while the other three are initialized to zero.
    Once the counters for 'succeeded' and 'failed' match the 'total', the subtasks are done and
    the InstructorTask's "status" will be changed to SUCCESS.

    The "subtasks" field also contains a 'status' key, that contains a dict that stores status
    information for each subtask.  The value for each subtask (keyed by its task_id)
    is its subtask status, as defined by SubtaskStatus.to_dict().

    This information needs to be set up in the InstructorTask before any of the subtasks start
    running.  If not, there is a chance that the subtasks could complete before the parent task
    is done creating subtasks.  Doing so also simplifies the save() here, as it avoids the need
    for locking.

    Monitoring code should assume that if an InstructorTask has subtask information, that it should
    rely on the status stored in the InstructorTask object, rather than status stored in the
    corresponding AsyncResult.
    """
    task_progress = {
        'action_name': action_name,
        'attempted': 0,
        'failed': 0,
        'skipped': 0,
        'succeeded': 0,
        'total': total_num,
        'duration_ms': int(0),
        'start_time': time()
    }
    entry.task_output = InstructorTask.create_output_for_success(task_progress)
    entry.task_state = PROGRESS

    # Write out the subtasks information.
    num_subtasks = len(subtask_id_list)
    # Note that may not be necessary to store initial value with all those zeroes!
    # Write out as a dict, so it will go more smoothly into json.
    subtask_status = {subtask_id: (SubtaskStatus.create(subtask_id)).to_dict() for subtask_id in subtask_id_list}
    subtask_dict = {
        'total': num_subtasks,
        'succeeded': 0,
        'failed': 0,
        'status': subtask_status
    }
    entry.subtasks = json.dumps(subtask_dict)

    # and save the entry immediately, before any subtasks actually start work:
    entry.save_now()
    return task_progress
开发者ID:Colin-Fredericks,项目名称:edx-platform,代码行数:59,代码来源:subtasks.py

示例4: test_send_email_undefined_subtask

 def test_send_email_undefined_subtask(self):
     # test at a lower level, to ensure that the course gets checked down below too.
     entry = InstructorTask.create(self.course.id, "task_type", "task_key", "task_input", self.instructor)
     entry_id = entry.id
     to_list = ['[email protected]']
     global_email_context = {'course_title': 'dummy course'}
     subtask_id = "subtask-id-value"
     subtask_status = SubtaskStatus.create(subtask_id)
     email_id = 1001
     with self.assertRaisesRegexp(DuplicateTaskException, 'unable to find subtasks of instructor task'):
         send_course_email(entry_id, email_id, to_list, global_email_context, subtask_status.to_dict())
开发者ID:edx,项目名称:edx-platform,代码行数:11,代码来源:test_err_handling.py

示例5: test_nonexistent_course

 def test_nonexistent_course(self):
     """
     Tests exception when the course in the email doesn't exist
     """
     course_id = CourseLocator("I", "DONT", "EXIST")
     email = CourseEmail(course_id=course_id)
     email.save()
     entry = InstructorTask.create(course_id, "task_type", "task_key", "task_input", self.instructor)
     task_input = {"email_id": email.id}
     # (?i) is a regex for ignore case
     with self.assertRaisesRegexp(ValueError, r"(?i)course not found"):
         perform_delegate_email_batches(entry.id, course_id, task_input, "action_name")
开发者ID:edx,项目名称:edx-platform,代码行数:12,代码来源:test_err_handling.py

示例6: test_send_email_missing_subtask

 def test_send_email_missing_subtask(self):
     # test at a lower level, to ensure that the course gets checked down below too.
     entry = InstructorTask.create(self.course.id, "task_type", "task_key", "task_input", self.instructor)
     entry_id = entry.id
     to_list = ['[email protected]']
     global_email_context = {'course_title': 'dummy course'}
     subtask_id = "subtask-id-value"
     initialize_subtask_info(entry, "emailed", 100, [subtask_id])
     different_subtask_id = "bogus-subtask-id-value"
     subtask_status = SubtaskStatus.create(different_subtask_id)
     bogus_email_id = 1001
     with self.assertRaisesRegexp(DuplicateTaskException, 'unable to find status for subtask of instructor task'):
         send_course_email(entry_id, bogus_email_id, to_list, global_email_context, subtask_status.to_dict())
开发者ID:edx,项目名称:edx-platform,代码行数:13,代码来源:test_err_handling.py

示例7: test_send_email_running_subtask

 def test_send_email_running_subtask(self):
     # test at a lower level, to ensure that the course gets checked down below too.
     entry = InstructorTask.create(self.course.id, "task_type", "task_key", "task_input", self.instructor)
     entry_id = entry.id
     subtask_id = "subtask-id-value"
     initialize_subtask_info(entry, "emailed", 100, [subtask_id])
     subtask_status = SubtaskStatus.create(subtask_id)
     update_subtask_status(entry_id, subtask_id, subtask_status)
     check_subtask_is_valid(entry_id, subtask_id, subtask_status)
     bogus_email_id = 1001
     to_list = ['[email protected]']
     global_email_context = {'course_title': 'dummy course'}
     with self.assertRaisesRegexp(DuplicateTaskException, 'already being executed'):
         send_course_email(entry_id, bogus_email_id, to_list, global_email_context, subtask_status.to_dict())
开发者ID:edx,项目名称:edx-platform,代码行数:14,代码来源:test_err_handling.py

示例8: test_send_email_undefined_email

 def test_send_email_undefined_email(self):
     # test at a lower level, to ensure that the course gets checked down below too.
     entry = InstructorTask.create(self.course.id, "task_type", "task_key", "task_input", self.instructor)
     entry_id = entry.id
     to_list = ['[email protected]']
     global_email_context = {'course_title': 'dummy course'}
     subtask_id = "subtask-id-undefined-email"
     initialize_subtask_info(entry, "emailed", 100, [subtask_id])
     subtask_status = SubtaskStatus.create(subtask_id)
     bogus_email_id = 1001
     with self.assertRaises(CourseEmail.DoesNotExist):
         # we skip the call that updates subtask status, since we've not set up the InstructorTask
         # for the subtask, and it's not important to the test.
         with patch('bulk_email.tasks.update_subtask_status'):
             send_course_email(entry_id, bogus_email_id, to_list, global_email_context, subtask_status.to_dict())
开发者ID:edx,项目名称:edx-platform,代码行数:15,代码来源:test_err_handling.py

示例9: test_send_email_with_locked_instructor_task

 def test_send_email_with_locked_instructor_task(self):
     # test at a lower level, to ensure that the course gets checked down below too.
     entry = InstructorTask.create(self.course.id, "task_type", "task_key", "task_input", self.instructor)
     entry_id = entry.id
     subtask_id = "subtask-id-locked-model"
     initialize_subtask_info(entry, "emailed", 100, [subtask_id])
     subtask_status = SubtaskStatus.create(subtask_id)
     bogus_email_id = 1001
     to_list = ['[email protected]']
     global_email_context = {'course_title': 'dummy course'}
     with patch('lms.djangoapps.instructor_task.subtasks.InstructorTask.save') as mock_task_save:
         mock_task_save.side_effect = DatabaseError
         with self.assertRaises(DatabaseError):
             send_course_email(entry_id, bogus_email_id, to_list, global_email_context, subtask_status.to_dict())
         self.assertEquals(mock_task_save.call_count, MAX_DATABASE_LOCK_RETRIES)
开发者ID:edx,项目名称:edx-platform,代码行数:15,代码来源:test_err_handling.py

示例10: test_wrong_course_id_in_email

 def test_wrong_course_id_in_email(self):
     """
     Tests exception when the course_id in CourseEmail is not the same as one explicitly passed in.
     """
     email = CourseEmail.create(
         CourseLocator("bogus", "course", "id"),
         self.instructor,
         [SEND_TO_MYSELF],
         "re: subject",
         "dummy body goes here"
     )
     entry = InstructorTask.create(self.course.id, "task_type", "task_key", "task_input", self.instructor)
     task_input = {"email_id": email.id}
     with self.assertRaisesRegexp(ValueError, 'does not match email value'):
         perform_delegate_email_batches(entry.id, self.course.id, task_input, "action_name")
开发者ID:edx,项目名称:edx-platform,代码行数:15,代码来源:test_err_handling.py

示例11: test_nonexistent_email

 def test_nonexistent_email(self, mock_log, result):
     """
     Tests retries when the email doesn't exist
     """
     # create an InstructorTask object to pass through
     course_id = self.course.id
     entry = InstructorTask.create(course_id, "task_type", "task_key", "task_input", self.instructor)
     task_input = {"email_id": -1}
     with self.assertRaises(CourseEmail.DoesNotExist):
         perform_delegate_email_batches(entry.id, course_id, task_input, "action_name")
     ((log_str, __, email_id), __) = mock_log.warning.call_args
     self.assertTrue(mock_log.warning.called)
     self.assertIn('Failed to get CourseEmail with id', log_str)
     self.assertEqual(email_id, -1)
     self.assertFalse(result.called)
开发者ID:edx,项目名称:edx-platform,代码行数:15,代码来源:test_err_handling.py

示例12: test_send_email_retried_subtask

 def test_send_email_retried_subtask(self):
     # test at a lower level, to ensure that the course gets checked down below too.
     entry = InstructorTask.create(self.course.id, "task_type", "task_key", "task_input", self.instructor)
     entry_id = entry.id
     subtask_id = "subtask-id-value"
     initialize_subtask_info(entry, "emailed", 100, [subtask_id])
     subtask_status = SubtaskStatus.create(subtask_id, state=RETRY, retried_nomax=2)
     update_subtask_status(entry_id, subtask_id, subtask_status)
     bogus_email_id = 1001
     to_list = ['[email protected]']
     global_email_context = {'course_title': 'dummy course'}
     # try running with a clean subtask:
     new_subtask_status = SubtaskStatus.create(subtask_id)
     with self.assertRaisesRegexp(DuplicateTaskException, 'already retried'):
         send_course_email(entry_id, bogus_email_id, to_list, global_email_context, new_subtask_status.to_dict())
     # try again, with a retried subtask with lower count:
     new_subtask_status = SubtaskStatus.create(subtask_id, state=RETRY, retried_nomax=1)
     with self.assertRaisesRegexp(DuplicateTaskException, 'already retried'):
         send_course_email(entry_id, bogus_email_id, to_list, global_email_context, new_subtask_status.to_dict())
开发者ID:edx,项目名称:edx-platform,代码行数:19,代码来源:test_err_handling.py

示例13: on_success

    def on_success(self, task_progress, task_id, args, kwargs):
        """
        Update InstructorTask object corresponding to this task with info about success.

        Updates task_output and task_state.  But it shouldn't actually do anything
        if the task is only creating subtasks to actually do the work.

        Assumes `task_progress` is a dict containing the task's result, with the following keys:

          'attempted': number of attempts made
          'succeeded': number of attempts that "succeeded"
          'skipped': number of attempts that "skipped"
          'failed': number of attempts that "failed"
          'total': number of possible subtasks to attempt
          'action_name': user-visible verb to use in status messages.  Should be past-tense.
              Pass-through of input `action_name`.
          'duration_ms': how long the task has (or had) been running.

        This is JSON-serialized and stored in the task_output column of the InstructorTask entry.

        """
        TASK_LOG.debug(u'Task %s: success returned with progress: %s', task_id, task_progress)
        # We should be able to find the InstructorTask object to update
        # based on the task_id here, without having to dig into the
        # original args to the task.  On the other hand, the entry_id
        # is the first value passed to all such args, so we'll use that.
        # And we assume that it exists, else we would already have had a failure.
        entry_id = args[0]
        entry = InstructorTask.objects.get(pk=entry_id)
        # Check to see if any subtasks had been defined as part of this task.
        # If not, then we know that we're done.  (If so, let the subtasks
        # handle updating task_state themselves.)
        if len(entry.subtasks) == 0:
            entry.task_output = InstructorTask.create_output_for_success(task_progress)
            entry.task_state = SUCCESS
            entry.save_now()
开发者ID:digitalsatori,项目名称:edx-platform,代码行数:36,代码来源:tasks_base.py

示例14: _update_instructor_task

def _update_instructor_task(instructor_task, task_result):
    """
    Updates and possibly saves a InstructorTask entry based on a task Result.

    Used when updated status is requested.

    The `instructor_task` that is passed in is updated in-place, but
    is usually not saved.  In general, tasks that have finished (either with
    success or failure) should have their entries updated by the task itself,
    so are not updated here.  Tasks that are still running are not updated
    and saved while they run.  The one exception to the no-save rule are tasks that
    are in a "revoked" state.  This may mean that the task never had the
    opportunity to update the InstructorTask entry.

    Tasks that are in progress and have subtasks doing the processing do not look
    to the task's AsyncResult object.  When subtasks are running, the
    InstructorTask object itself is updated with the subtasks' progress,
    not any AsyncResult object.  In this case, the InstructorTask is
    not updated at all.

    Calculates json to store in "task_output" field of the `instructor_task`,
    as well as updating the task_state.

    For a successful task, the json contains the output of the task result.
    For a failed task, the json contains "exception", "message", and "traceback"
    keys.   A revoked task just has a "message" stating it was revoked.
    """
    # Pull values out of the result object as close to each other as possible.
    # If we wait and check the values later, the values for the state and result
    # are more likely to have changed.  Pull the state out first, and
    # then code assuming that the result may not exactly match the state.
    task_id = task_result.task_id
    result_state = task_result.state
    returned_result = task_result.result
    result_traceback = task_result.traceback

    # Assume we don't always save the InstructorTask entry if we don't have to,
    # but that in most cases we will update the InstructorTask in-place with its
    # current progress.
    entry_needs_updating = True
    entry_needs_saving = False
    task_output = None

    if instructor_task.task_state == PROGRESS and len(instructor_task.subtasks) > 0:
        # This happens when running subtasks:  the result object is marked with SUCCESS,
        # meaning that the subtasks have successfully been defined.  However, the InstructorTask
        # will be marked as in PROGRESS, until the last subtask completes and marks it as SUCCESS.
        # We want to ignore the parent SUCCESS if subtasks are still running, and just trust the
        # contents of the InstructorTask.
        entry_needs_updating = False
    elif result_state in [PROGRESS, SUCCESS]:
        # construct a status message directly from the task result's result:
        # it needs to go back with the entry passed in.
        log.info("background task (%s), state %s:  result: %s", task_id, result_state, returned_result)
        task_output = InstructorTask.create_output_for_success(returned_result)
    elif result_state == FAILURE:
        # on failure, the result's result contains the exception that caused the failure
        exception = returned_result
        traceback = result_traceback if result_traceback is not None else ''
        log.warning("background task (%s) failed: %s %s", task_id, returned_result, traceback)
        task_output = InstructorTask.create_output_for_failure(exception, result_traceback)
    elif result_state == REVOKED:
        # on revocation, the result's result doesn't contain anything
        # but we cannot rely on the worker thread to set this status,
        # so we set it here.
        entry_needs_saving = True
        log.warning("background task (%s) revoked.", task_id)
        task_output = InstructorTask.create_output_for_revoked()

    # save progress and state into the entry, even if it's not being saved:
    # when celery is run in "ALWAYS_EAGER" mode, progress needs to go back
    # with the entry passed in.
    if entry_needs_updating:
        instructor_task.task_state = result_state
        if task_output is not None:
            instructor_task.task_output = task_output

        if entry_needs_saving:
            instructor_task.save()
开发者ID:cmscom,项目名称:edx-platform,代码行数:79,代码来源:api_helper.py

示例15: _update_subtask_status

def _update_subtask_status(entry_id, current_task_id, new_subtask_status):
    """
    Update the status of the subtask in the parent InstructorTask object tracking its progress.

    Uses select_for_update to lock the InstructorTask object while it is being updated.
    The operation is surrounded by a try/except/else that permit the manual transaction to be
    committed on completion, or rolled back on error.

    The InstructorTask's "task_output" field is updated.  This is a JSON-serialized dict.
    Accumulates values for 'attempted', 'succeeded', 'failed', 'skipped' from `new_subtask_status`
    into the corresponding values in the InstructorTask's task_output.  Also updates the 'duration_ms'
    value with the current interval since the original InstructorTask started.  Note that this
    value is only approximate, since the subtask may be running on a different server than the
    original task, so is subject to clock skew.

    The InstructorTask's "subtasks" field is also updated.  This is also a JSON-serialized dict.
    Keys include 'total', 'succeeded', 'retried', 'failed', which are counters for the number of
    subtasks.  'Total' is expected to have been set at the time the subtasks were created.
    The other three counters are incremented depending on the value of `status`.  Once the counters
    for 'succeeded' and 'failed' match the 'total', the subtasks are done and the InstructorTask's
    "status" is changed to SUCCESS.

    The "subtasks" field also contains a 'status' key, that contains a dict that stores status
    information for each subtask.  At the moment, the value for each subtask (keyed by its task_id)
    is the value of the SubtaskStatus.to_dict(), but could be expanded in future to store information
    about failure messages, progress made, etc.
    """
    TASK_LOG.info("Preparing to update status for subtask %s for instructor task %d with status %s",
                  current_task_id, entry_id, new_subtask_status)

    try:
        entry = InstructorTask.objects.select_for_update().get(pk=entry_id)
        subtask_dict = json.loads(entry.subtasks)
        subtask_status_info = subtask_dict['status']
        if current_task_id not in subtask_status_info:
            # unexpected error -- raise an exception
            format_str = "Unexpected task_id '{}': unable to update status for subtask of instructor task '{}'"
            msg = format_str.format(current_task_id, entry_id)
            TASK_LOG.warning(msg)
            raise ValueError(msg)

        # Update status:
        subtask_status_info[current_task_id] = new_subtask_status.to_dict()

        # Update the parent task progress.
        # Set the estimate of duration, but only if it
        # increases.  Clock skew between time() returned by different machines
        # may result in non-monotonic values for duration.
        task_progress = json.loads(entry.task_output)
        start_time = task_progress['start_time']
        prev_duration = task_progress['duration_ms']
        new_duration = int((time() - start_time) * 1000)
        task_progress['duration_ms'] = max(prev_duration, new_duration)

        # Update counts only when subtask is done.
        # In future, we can make this more responsive by updating status
        # between retries, by comparing counts that change from previous
        # retry.
        new_state = new_subtask_status.state
        if new_subtask_status is not None and new_state in READY_STATES:
            for statname in ['attempted', 'succeeded', 'failed', 'skipped']:
                task_progress[statname] += getattr(new_subtask_status, statname)

        # Figure out if we're actually done (i.e. this is the last task to complete).
        # This is easier if we just maintain a counter, rather than scanning the
        # entire new_subtask_status dict.
        if new_state == SUCCESS:
            subtask_dict['succeeded'] += 1
        elif new_state in READY_STATES:
            subtask_dict['failed'] += 1
        num_remaining = subtask_dict['total'] - subtask_dict['succeeded'] - subtask_dict['failed']

        # If we're done with the last task, update the parent status to indicate that.
        # At present, we mark the task as having succeeded.  In future, we should see
        # if there was a catastrophic failure that occurred, and figure out how to
        # report that here.
        if num_remaining <= 0:
            entry.task_state = SUCCESS
        entry.subtasks = json.dumps(subtask_dict)
        entry.task_output = InstructorTask.create_output_for_success(task_progress)

        TASK_LOG.debug("about to save....")
        entry.save()
        TASK_LOG.info("Task output updated to %s for subtask %s of instructor task %d",
                      entry.task_output, current_task_id, entry_id)
    except Exception:
        TASK_LOG.exception("Unexpected error while updating InstructorTask.")
        dog_stats_api.increment('instructor_task.subtask.update_exception')
        raise
开发者ID:Colin-Fredericks,项目名称:edx-platform,代码行数:89,代码来源:subtasks.py


注:本文中的lms.djangoapps.instructor_task.models.InstructorTask类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。