当前位置: 首页>>代码示例>>Python>>正文


Python Model.set_param_hint方法代码示例

本文整理汇总了Python中lmfit.Model.set_param_hint方法的典型用法代码示例。如果您正苦于以下问题:Python Model.set_param_hint方法的具体用法?Python Model.set_param_hint怎么用?Python Model.set_param_hint使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在lmfit.Model的用法示例。


在下文中一共展示了Model.set_param_hint方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: gauss_step_const

# 需要导入模块: from lmfit import Model [as 别名]
# 或者: from lmfit.Model import set_param_hint [as 别名]
def gauss_step_const(signal, guess):
    """
    Fits high contrast data very well
    """
    if guess == False:
        return [0, 0]
    else:
        amp, centre, stdev, offset = guess
        
        data = np.array([range(len(signal)), signal]).T
        X = data[:,0]
        Y = data[:,1]

#         gauss_mod = Model(gaussian)
        gauss_mod = Model(gaussian)
        const_mod = ConstantModel()
        step_mod = StepModel(prefix='step')
        
        pars = gauss_mod.make_params(height=amp, center=centre, width=stdev / 3., offset=offset)
#         pars = gauss_mod.make_params(amplitude=amp, center=centre, sigma=stdev / 3.)
        gauss_mod.set_param_hint('sigma', value = stdev / 3., min=stdev / 2., max=stdev)
        pars += step_mod.guess(Y, x=X, center=centre)

        pars += const_mod.guess(Y, x=X)
    
        
        mod = const_mod + gauss_mod + step_mod
        result = mod.fit(Y, pars, x=X)
        # write error report
        #print result.fit_report()
        print "contrast fit", result.redchi
    
    return X, result.best_fit, result.redchi
开发者ID:DiamondLightSource,项目名称:auto_tomo_calibration-experimental,代码行数:35,代码来源:fit_data.py

示例2: fit_model

# 需要导入模块: from lmfit import Model [as 别名]
# 或者: from lmfit.Model import set_param_hint [as 别名]
def fit_model(ms_dx, guess_s, hours_per_frame=5/60):
    fitfunc = lambda T, s, p: (s**2 * p**2) * (T/p - 1 + exp(-T/p))
    n = len(ms_dx)//2
    model = Model(fitfunc)
    model.set_param_hint('s', value=guess_s, min=0, max=250)
    # Constrain persistence time to ≥ 1 minute
    model.set_param_hint('p', value=0.5, min=1/60.)
    T = (arange(len(ms_dx)) + 1) * hours_per_frame
    result = model.fit(ms_dx[:n], T=T[:n])
    return result, (T, result.best_fit)
开发者ID:tdsmith,项目名称:migrationscripts,代码行数:12,代码来源:random_walk.py

示例3: center_on_cos

# 需要导入模块: from lmfit import Model [as 别名]
# 或者: from lmfit.Model import set_param_hint [as 别名]
def center_on_cos(raw_quadratures, phi0=None, omega=None, snap_omega=False):
    mean = scipy.average(raw_quadratures, axis=1)
    no_angles, no_pulses = raw_quadratures.shape
    model = Model(cos_model)
    offset, amplitude, phi0, omega = guess_initial_parameters(mean, phi0, omega)
    model.set_param_hint("offset", value=offset)
    model.set_param_hint("amplitude", min=0., value=amplitude)
    model.set_param_hint("phi0", value=phi0)
    model.set_param_hint("omega", min=0., value=omega)
    model.make_params(verbose=False)
    steps = scipy.arange(no_angles)
    res = model.fit(mean, x=steps, verbose=False)
    omega_param = res.params["omega"]
    if snap_omega:
        appx_omega = float(omega_param)
        no_pi_intervals = int(round(pi/appx_omega))
        omega = pi/no_pi_intervals
        omega_param.set(omega, vary=False)
        res.fit(mean, x=steps, verbose=False)
    d_value, p_value_ks = kstest(res.residual, 'norm')
    mean_fit = res.eval(x=steps)
    offset = mean-mean_fit
    aligned_quadratures = raw_quadratures - offset[:,None]
    centered_quadratures = aligned_quadratures - float(res.params["offset"])
    return (centered_quadratures,
            float(omega_param), float(res.params["phi0"]), p_value_ks)
开发者ID:tomohowk,项目名称:tomohowk,代码行数:28,代码来源:standardize_raw_quadratures.py

示例4: test_weird_param_hints

# 需要导入模块: from lmfit import Model [as 别名]
# 或者: from lmfit.Model import set_param_hint [as 别名]
    def test_weird_param_hints(self):
        # tests Github Issue 312, a very weird way to access param_hints
        def func(x, amp):
            return amp*x

        m = Model(func)
        models = {}
        for i in range(2):
            m.set_param_hint('amp', value=1)
            m.set_param_hint('amp', value=25)

            models[i] = Model(func, prefix='mod%i_' % i)
            models[i].param_hints['amp'] = m.param_hints['amp']

        self.assertEqual(models[0].param_hints['amp'],
                         models[1].param_hints['amp'])
开发者ID:NWUHEP,项目名称:lmfit-py,代码行数:18,代码来源:test_model.py

示例5: test_constraints_function_call

# 需要导入模块: from lmfit import Model [as 别名]
# 或者: from lmfit.Model import set_param_hint [as 别名]
def test_constraints_function_call():
    """Test a constraint with simple function call in Model class."""
    x = [1723, 1773, 1823, 1523, 1773, 1033.03078, 1042.98077, 1047.90937,
         1053.95899, 1057.94906, 1063.13788, 1075.74218, 1086.03102]
    y = [0.79934, -0.31876, -0.46852, 0.05, -0.21, 11.1708, 10.31844, 9.73069,
         9.21319, 9.12457, 9.05243, 8.66407, 8.29664]

    def VFT(T, ninf=-3, A=5e3, T0=800):
        return ninf + A/(T-T0)

    vftModel = Model(VFT)
    vftModel.set_param_hint('D', vary=False, expr=r'A*log(10)/T0')
    result = vftModel.fit(y, T=x)

    assert 2600.0 < result.params['A'].value < 2650.0
    assert 7.0 < result.params['D'].value < 7.5
开发者ID:lmfit,项目名称:lmfit-py,代码行数:18,代码来源:test_algebraic_constraint.py

示例6: test_hints_in_composite_models

# 需要导入模块: from lmfit import Model [as 别名]
# 或者: from lmfit.Model import set_param_hint [as 别名]
    def test_hints_in_composite_models(self):
        # test propagation of hints from base models to composite model
        def func(x, amplitude):
            pass

        m1 = Model(func, prefix='p1_')
        m2 = Model(func, prefix='p2_')

        m1.set_param_hint('amplitude', value=1)
        m2.set_param_hint('amplitude', value=2)

        mx = (m1 + m2)
        params = mx.make_params()
        param_values = {name: p.value for name, p in params.items()}
        self.assertEqual(param_values['p1_amplitude'], 1)
        self.assertEqual(param_values['p2_amplitude'], 2)
开发者ID:NWUHEP,项目名称:lmfit-py,代码行数:18,代码来源:test_model.py

示例7: _iterate

# 需要导入模块: from lmfit import Model [as 别名]
# 或者: from lmfit.Model import set_param_hint [as 别名]
def _iterate(simulation, expected, guess, bounds, variables, independent, callable_, global_, local_):
    biased_parameters = np.zeros((len(local_['input']), len(expected)))
    success_ar = np.zeros(len(local_['input']))
    expected_dict = {key: value for key, value in zip(variables, expected)}
    gmod = Model(callable_, independent_vars=independent.keys(), param_names=variables, method='lbfgsb')
    for param, ini, limits in zip(variables, guess, bounds):
        gmod.set_param_hint(param, value=ini, min=limits[0], max=limits[1])

    independent[global_['param']] = global_['input']
    for i, input_ in enumerate(local_['input']):
        independent[local_['param']] = input_
        result = gmod.fit(simulation, verbose=False, **independent)
        print(result.fit_report())
        success_ar[i] = result.success
        biased_parameters[i] = np.array([result.params[key].value - expected_dict[key] for key in variables])
    return biased_parameters, success_ar
开发者ID:ZidCode,项目名称:ibsen_eval,代码行数:18,代码来源:Sensitivity_Analysis.py

示例8: lmfit

# 需要导入模块: from lmfit import Model [as 别名]
# 或者: from lmfit.Model import set_param_hint [as 别名]
def lmfit(mjd,flux,fluxerr):
    t0_guess = mjd[np.argmax(flux)]
    tau_fall_guess = 40.
    tau_rise_guess = -5.
    A = 150.
    B = 20.
    # nflux = np.zeros(2+len(np.array(flux)))
    # nfluxerr = np.ones(2+len(np.array(flux)))/10.
    # nmjd = np.zeros(2+len(np.array(flux)))
    #
    # nflux[1:-1] = flux
    # nfluxerr[1:-1] = fluxerr
    # nmjd[1:-1] = mjd
    # nmjd[1] = mjd[0]-100.
    # nmjd[-1] = mjd[-1]+150
    #
    # flux = nflux
    # fluxerr = nfluxerr
    # mjd = nmjd

    bmod = Model(bazinfunc)
    bmod.set_param_hint('t0', value=t0_guess, min=t0_guess-20, max=t0_guess+20)
    bmod.set_param_hint('tau_fall', value=tau_fall_guess)
    bmod.set_param_hint('tau_rise', value=tau_rise_guess)
    bmod.set_param_hint('A',value=A)
    bmod.set_param_hint('B',value=B)

    pars = bmod.make_params()
    #print(bmod.param_names)
    #print(bmod.independent_vars)
    # print(np.array(flux))
    # print(np.array(1./np.array(fluxerr)))
    # print(np.array(mjd))
    result = bmod.fit(np.array(flux),method='leastsq',weights=1./np.array(fluxerr), t=np.array(mjd))

    #print(result.fit_report())
    # plt.clf()
    # plt.errorbar(np.array(mjd), np.array(flux), yerr=fluxerr,fmt='o')
    # plt.plot(np.array(mjd), result.init_fit, 'k--')
    # plt.plot(np.array(mjd), result.best_fit, 'r-')
    # #plt.xlim(mjd[1],mjd[-2])
    # plt.savefig('bazinfit.png')



    chisq = result.redchi
    ps = result.best_values
    popt = [ps['t0'],ps['tau_fall'],ps['tau_rise'],ps['A'],ps['B']]
    #print('popt',popt)
    #sys.exit()
    # if chisq < 2.:
    #     input('good chisq!')

    # popt, pcov, infodict, errmsg, ier = curve_fit(bazinfunc, mjd, flux,
    #                                               sigma=fluxerr, p0=p0, maxfev=2000000, full_output=True)
    #
    # chisq = (infodict['fvec'] ** 2).sum() / (len(infodict['fvec']) - len(popt))
    return chisq,popt
开发者ID:djbrout,项目名称:deepsnid,代码行数:60,代码来源:bazin.py

示例9: GaussStepConst

# 需要导入模块: from lmfit import Model [as 别名]
# 或者: from lmfit.Model import set_param_hint [as 别名]
def GaussStepConst(signal, guess):
    """
    Fits high contrast data very well
    """
    if guess == False:
        return [0, 0, 0]
    else:
        amp, centre, stdev, offset = guess
        
        data = np.array([range(len(signal)), signal]).T
        X = data[:,0]
        Y = data[:,1]

#         gauss_mod = Model(gaussian)
        gauss_mod = Model(gaussian)
        const_mod = ConstantModel()
        step_mod = StepModel(prefix='step')
        
        gauss_mod.set_param_hint('width', value = stdev / 2., min=stdev / 3., max=stdev)
        gauss_mod.set_param_hint('fwhm', expr='2.3548*width')
        pars = gauss_mod.make_params(height=amp, center=centre, width=stdev / 2., offset=offset)
        
        pars += step_mod.guess(Y, x=X, center=centre)

        pars += const_mod.guess(Y, x=X)
        
        pars['width'].vary = False
        
        mod = const_mod + gauss_mod + step_mod
        result = mod.fit(Y, pars, x=X)
        # write error report
        #print result.fit_report()
        
        fwhm = result.best_values['width'] * 2.3548
        
    return X, result.best_fit, result.redchi, fwhm
开发者ID:DiamondLightSource,项目名称:auto_tomo_calibration-experimental,代码行数:38,代码来源:fit_data.py

示例10: tau_fitter

# 需要导入模块: from lmfit import Model [as 别名]
# 或者: from lmfit.Model import set_param_hint [as 别名]
def tau_fitter(data,nbins):
    
    profile_peak = np.max(data)
    binpeak = np.argmax(data)    
    modelname = GxETrain
    model = Model(modelname)
            
    model.set_param_hint('nbins', value=nbins, vary=False)       
    model.set_param_hint('sigma', value=15, vary=True, min =0, max = nbins)
    model.set_param_hint('mu', value=binpeak, vary=True, min=0, max = nbins)
    model.set_param_hint('A',value=profile_peak, vary=True)
    model.set_param_hint('tau',value=200, vary=True, min=0)
    model.set_param_hint('dc',value = 0, vary = True)
    pars = model.make_params()
    
    #"""Fit data"""
    result = model.fit(data,pars,x=np.linspace(1,nbins,nbins))
#    print(result.fit_report(show_correl = False))
    
    noiselessmodel = result.best_fit
    besttau = result.best_values['tau']
    taustd = result.params['tau'].stderr  ##estimated 1 sigma error

    return noiselessmodel, besttau, taustd
开发者ID:marisageyer,项目名称:Standalone_taufits,代码行数:26,代码来源:pypsr_redo.py

示例11: example

# 需要导入模块: from lmfit import Model [as 别名]
# 或者: from lmfit.Model import set_param_hint [as 别名]
def example():
    # possible values
    from get_ssa import get_ssa
    from Model import IrradianceModel

    zenith = 53.1836240528
    AMass = 1.66450160404
    rel_h = 0.665
    pressure = 950
    AM = 5
    ssa = get_ssa(rel_h, AM)
    iteration = 20
    alphas = np.zeros(len(range(1, iteration)) + 1)

    x = np.linspace(200, 800, 100)
    irr = IrradianceModel_python(AMass, rel_h, ssa, zenith, pressure)
    irr_symbol = IrradianceModel(x, zenith, AMass, pressure, ssa)

    func = irr_symbol._irradiance_ratio()

    y = irr.irradiance_ratio(x, 2.5, 0.06, 0.0, 1.0, 1.0)
    for i in range(0, iteration):
        ssa = get_ssa(rel_h, AM)
        print(ssa)
        irr = IrradianceModel_python(AMass, rel_h, ssa, zenith, pressure)
        yerror = np.random.normal(0, 0.009, len(x))
        y = irr.irradiance_ratio(x, 1.5, 0.06, 0.0, 0.6, 0.9) + yerror
        weights = 1 / yerror

        gmod = Model(irr.irradiance_ratio, independent_vars=["x"], param_names=["alpha", "beta", "g_dsa", "g_dsr"])

        gmod.set_param_hint("alpha", value=1.0, min=-0.2, max=2.5)
        gmod.set_param_hint("beta", value=0.01, min=0.0, max=2.0)
        gmod.set_param_hint("g_dsa", value=0.6, min=0.0, max=1.0)
        gmod.set_param_hint("g_dsr", value=0.9, min=0.0, max=1.0)
        print(gmod.param_hints)
        print(gmod.param_names)
        print(gmod.independent_vars)

        result = gmod.fit(y, x=x)
        print(result.fit_report())
        alphas[i] = result.params["alpha"].value

        # plt.plot(x, y, label='%s' % AM)
        # plt.plot(x, result.best_fit, 'r-', label='fit')
    y = irr.irradiance_ratio(x, 1.5, 0.06, 0.0, 0.6, 0.9)
    y2 = irr.irradiance_ratio(x, 1.5, 0.08, 0.0, 0.6, 0.9)

    plt.legend()
    plt.show()
开发者ID:ZidCode,项目名称:ibsen_eval,代码行数:52,代码来源:model_factory.py

示例12: minimizefunction

# 需要导入模块: from lmfit import Model [as 别名]
# 或者: from lmfit.Model import set_param_hint [as 别名]
def minimizefunction(vars,low,high,data):
    mymod=Model(myfitfunction)
    newdata=[]
    x=np.array(range(low,high),int)
    for i in xrange(low,high):
        newdata.append(data[i])
    #params=getparams(vars)
    mymod.set_param_hint('a',value=vars[0])
    mymod.set_param_hint('b',value=vars[1],min=0,max=0.5)
    mymod.set_param_hint('c',value=vars[2])
    mymod.set_param_hint('d',value=vars[3],min=-1,max=1.1)
    mymod.set_param_hint('e',value=vars[4])
    mymod.set_param_hint('f',value=vars[5],min=-1,max=1.1)
    mymod.set_param_hint('g',value=vars[6])
    #print params
    out=mymod.fit(newdata,x=x)
    #result=getresult(out.params)
    print(out.fit_report())
    #x1=np.linspace(1,length,10000)
    plt.plot(x,newdata,'blue',linestyle='dashed',marker='.')
    plt.plot(x,out.init_fit,'y',linewidth=2)
    plt.plot(x,out.best_fit,'r',linewidth=2)
    plt.xlabel("circle(Time)")
    plt.ylabel("fluorescence")
    plt.legend()
    plt.show()
    file_result=open('./result/result_select_itera.txt','r+')
    file_result.read()
    file_result.write(out.fit_report())
    file_result.write('\n\n')
    file_result.close()
开发者ID:youbingchenyoubing,项目名称:pso_curvefitting,代码行数:33,代码来源:evaluation.py

示例13: gauss_fit

# 需要导入模块: from lmfit import Model [as 别名]
# 或者: from lmfit.Model import set_param_hint [as 别名]
def gauss_fit(x, y, a0=None, x0=None, sig0=None, emission=True):
    """ Return ``curve_fit``, i.e., ``popt, pcov``.

    def gauss_fit(x, y, a0=None, x0=None, sig0=None, emission=True, ssize=0.05):
    
    # def gauss(x, a, x0, sigma):
    #     y0=1.
    #     return a*_np.exp(-(x-x0)**2/(2*sigma**2))+y0
    if ssize < 0 or ssize > .5:
        _warn.warn('Invalid ssize value...', stacklevel=2)
        ssize = 0
    ssize = int(ssize * len(y))
    if ssize == 0:
        ssize = 1

    q = 95
    func = _np.max
    if not emission:
        func = _np.min
        q = 5
    if a0 is None:
        a0 = _np.abs(_np.percentile(y, q)) - _np.median(y)
    if x0 is None:
        x0 = x[_np.where(y == func(y))]
    if sig0 is None:
        sig0 = (_np.max(x)-_np.min(x))/10.
    # if y0 is None:
    #     y0 = np.median(y)
    # gmodel = _Model(gauss)
    # gmodel.set_param_hint('a', min=0.2, max=20)
    # if not emission:
    #     gmodel.set_param_hint('a', min=-0.2, max=-4)
    # gmodel.set_param_hint('sigma', min=50, max=1000)
    # result = gmodel.fit(y, x=x, a=a0, x0=x0, sigma=sig0)
    # print(result.params['a'], result.params['sigma'], result.params['x0'])
    # return result.params['a']*_np.sqrt(_np.pi*2)*result.params['sigma']
    medx0, medx1 = _np.average(x[:ssize]), _np.average(x[-ssize:])
    if ssize > 9:
        medy0, medy1 = _np.median(y[:ssize]), _np.median(y[-ssize:])
    else:
        medy0, medy1 = _np.average(y[:ssize]), _np.average(y[-ssize:])
    new_y = medy0 + (medy1 - medy0) * (x - medx0) / (medx1 - medx0)
    g_init = _models.Gaussian1D(amplitude=a0, mean=x0, stddev=sig0)
    fit_g = _fitting.LevMarLSQFitter()
    g = fit_g(g_init, x, y-new_y)
    """
    q = 95
    func = np.max
    if not emission:
        func = np.min
        q = 5
    if a0 is None:
        a0 = np.abs(np.percentile(y, q)) - np.median(y)
    if x0 is None:
        x0 = x[np.where(y == func(y))]
    if sig0 is None:
        sig0 = (np.max(x)-np.min(x))/10.
    # if y0 is None:
    #     y0 = np.median(y)
    gmodel = Model(gauss)
    gmodel.set_param_hint('a', min=0.2, max=4)
    if not emission:
        gmodel.set_param_hint('a', min=-0.2, max=-4)
    gmodel.set_param_hint('sigma', min=50, max=1000)
    result = gmodel.fit(y, x=x, a=a0, x0=x0, sigma=sig0)

    fig, (ax0, ax1) = plt.subplots(2, 1)
    ax0.plot(x, y, 'bo')
    ax0.plot(x, result.init_fit, 'k--')
    ax0.plot(x, result.best_fit, 'r-')
    ax0.set_title(fitsfile)
    print(lbc, np.min(x))
    idx = np.where((wl > lbc*0.98) & (wl < lbc*1.03))
    ax1.plot(wl[idx], flux[idx], 'o')
    plt.show(block=False)
    cmd = phc.user_input('# Problem (y/other)? ')
    if cmd.lower().startswith('y'):
        raise ValueError
    # phc.savefig(fig, figname=fitsfile)
    return result.params['x0']
开发者ID:danmoser,项目名称:pyhdust,代码行数:82,代码来源:shift_spec.py

示例14: range

# 需要导入模块: from lmfit import Model [as 别名]
# 或者: from lmfit.Model import set_param_hint [as 别名]
	# Find Rupture Force
	ruptureI = np.argmin(retractD)
	ruptureF = k_L*(retractD[ruptureI] - y_shift)/contactS
	ruptureL = (retractZ[ruptureI] - (retractD[ruptureI] - y_shift) - x_shift)
	
	for x in range(len(retractZ)):
		if (retractZ[x] - x_shift) < 0:
			originPt = x
			break

	# Fit WLC model to rupture
	separation = (retractZ - (retractD - y_shift) - x_shift)

	skipPLT5 = True
	gmod = Model(WLCmodel)
	gmod.set_param_hint('L_C', value = -60.0)
	gmod.set_param_hint('L_P', value = -0.38, min=-0.42, max=-0.34)
	gmod.set_param_hint('a', value = 0.0, min=-10.0, max=10.0)
	gmod.set_param_hint('b', value = 0.0, min=-10.0, max=10.0)
	params = gmod.make_params()
	try:
		result = gmod.fit(smooth25[originPt:ruptureI], x=separation[originPt:ruptureI]) # method='cobyla'
	except Exception:
		skipPLT5 = False
		sys.exc_clear()
	if skipPLT5:
		x_off = result.params['a'].value
		y_off = result.params['b'].value
		WLC_P = result.params['L_P'].value
		WLC_L0 = result.params['L_C'].value
	else:
开发者ID:edwardlk,项目名称:P_Force_Curve,代码行数:33,代码来源:fullAnalysis.py

示例15: fitfunction

# 需要导入模块: from lmfit import Model [as 别名]
# 或者: from lmfit.Model import set_param_hint [as 别名]
def fitfunction(vars,length,data,weight=None,method='leastsq'):
    mymod=Model(myfitfunction)
    x=np.array(range(1,length+1),int)
    #params=getparams(vars)
    mymod.set_param_hint('a',value=vars[0])
    mymod.set_param_hint('b',value=vars[1],min=0,max=0.5)
    mymod.set_param_hint('c',value=vars[2])
    mymod.set_param_hint('d',value=vars[3],min=-1,max=1.1)
    mymod.set_param_hint('e',value=vars[4])
    mymod.set_param_hint('f',value=vars[5],min=-1,max=1.1)
    mymod.set_param_hint('g',value=vars[6])
    #print params
    out=mymod.fit(data,x=x,weight=weight)
    #result=getresult(out.params)
    print(out.fit_report())
    #x1=np.linspace(1,length,10000)
    initialRMSE=printresult(data,out.init_fit)
    bestRMSE=printresult(data,out.best_fit)
    plt.plot(x,data,'blue',linestyle='dashed',marker='.')
    plt.plot(x,out.init_fit,'y',linewidth=2)
    print("RMSE of pso is{}".format(initialRMSE))
    if initialRMSE<bestRMSE:
        plt.plot(x,out.init_fit,'r',linewidth=2)
        print("RMSE of iteration is {}".format(initialRMSE))
    else:
        plt.plot(x,out.best_fit,'r',linewidth=2)
        print("RMSE of iteration is {}".format(bestRMSE))
    plt.xlabel("circle(Time)")
    plt.ylabel("fluorescence")
    plt.legend()
    plt.show()
    file_result=open('./result/result_all_itera.txt','r+')
    file_result.read()
    file_result.write(out.fit_report())
    file_result.write('\n\n')
    file_result.close()
开发者ID:youbingchenyoubing,项目名称:pso_curvefitting,代码行数:38,代码来源:evaluation.py


注:本文中的lmfit.Model.set_param_hint方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。