本文整理汇总了Python中lmfdb.WebNumberField.WebNumberField.full_dirichlet_group方法的典型用法代码示例。如果您正苦于以下问题:Python WebNumberField.full_dirichlet_group方法的具体用法?Python WebNumberField.full_dirichlet_group怎么用?Python WebNumberField.full_dirichlet_group使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类lmfdb.WebNumberField.WebNumberField
的用法示例。
在下文中一共展示了WebNumberField.full_dirichlet_group方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from lmfdb.WebNumberField import WebNumberField [as 别名]
# 或者: from lmfdb.WebNumberField.WebNumberField import full_dirichlet_group [as 别名]
def __init__(self, **args):
constructor_logger(self, args)
self.motivic_weight = 0
# Check for compulsory arguments
if not 'label' in args.keys():
raise Exception("You have to supply a label for a Dedekind zeta function")
# Initialize default values
# Put the arguments into the object dictionary
self.__dict__.update(args)
# Fetch the polynomial of the field from the database
wnf = WebNumberField(self.label)
# poly_coeffs = wnf.coeffs()
# Extract the L-function information from the polynomial
R = QQ['x']
(x,) = R._first_ngens(1)
# self.polynomial = sum([poly_coeffs[i]*x**i for i in range(len(poly_coeffs))])
self.NF = wnf.K() # NumberField(self.polynomial, 'a')
self.signature = wnf.signature() # self.NF.signature()
self.sign = 1
self.quasidegree = sum(self.signature)
self.level = wnf.disc().abs() # self.NF.discriminant().abs()
self.degreeofN = self.NF.degree()
self.Q_fe = float(
sqrt(self.level) / (2 ** (self.signature[1]) * (math.pi) ** (float(self.degreeofN) / 2.0)))
self.kappa_fe = self.signature[0] * [0.5] + self.signature[1] * [1]
self.lambda_fe = self.quasidegree * [0]
self.mu_fe = self.signature[0] * [0] # not in use?
self.nu_fe = self.signature[1] * [0] # not in use?
self.langlands = True
# self.degree = self.signature[0] + 2 * self.signature[1] # N = r1 +2r2
self.degree = self.degreeofN
self.dirichlet_coefficients = [Integer(x) for x in self.NF.zeta_coefficients(5000)]
self.h = wnf.class_number() # self.NF.class_number()
self.R = wnf.regulator() # self.NF.regulator()
self.w = len(self.NF.roots_of_unity())
self.res = RR(2 ** self.signature[0] * self.h * self.R / self.w) # r1 = self.signature[0]
self.grh = wnf.used_grh()
if self.degree > 1:
if wnf.is_abelian():
cond = wnf.conductor()
dir_group = wnf.dirichlet_group()
# Remove 1 from the list
j = 0
while dir_group[j] != 1:
j += 1
dir_group.pop(j)
self.factorization = r'\(\zeta_K(s) =\) <a href="/L/Riemann/">\(\zeta(s)\)</a>'
fullchargroup = wnf.full_dirichlet_group()
for j in dir_group:
chij = fullchargroup[j]
mycond = chij.conductor()
myj = j % mycond
self.factorization += r'\(\;\cdot\) <a href="/L/Character/Dirichlet/%d/%d/">\(L(s,\chi_{%d}(%d, \cdot))\)</a>' % (mycond, myj, mycond, myj)
self.poles = [1, 0] # poles of the Lambda(s) function
self.residues = [self.res, -self.res] # residues of the Lambda(s) function
self.poles_L = [1] # poles of L(s) used by createLcalcfile_ver2
self.residues_L = [1234]
# residues of L(s) used by createLcalcfile_ver2, XXXXXXXXXXXX needs to be set
self.coefficient_period = 0
self.selfdual = True
self.primitive = True
self.coefficient_type = 0
self.texname = "\\zeta_K(s)"
self.texnamecompleteds = "\\Lambda_K(s)"
if self.selfdual:
self.texnamecompleted1ms = "\\Lambda_K(1-s)"
else:
self.texnamecompleted1ms = "\\Lambda_K(1-s)"
self.title = "Dedekind zeta-function: $\\zeta_K(s)$"
self.title = self.title + ", where $K$ is the " + str(self.NF).replace("in a ", "")
self.credit = 'Sage'
self.citation = ''
self.generateSageLfunction()