本文整理汇总了Python中linetools.spectralline.AbsLine.analy['spec']方法的典型用法代码示例。如果您正苦于以下问题:Python AbsLine.analy['spec']方法的具体用法?Python AbsLine.analy['spec']怎么用?Python AbsLine.analy['spec']使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类linetools.spectralline.AbsLine
的用法示例。
在下文中一共展示了AbsLine.analy['spec']方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_stack_plot
# 需要导入模块: from linetools.spectralline import AbsLine [as 别名]
# 或者: from linetools.spectralline.AbsLine import analy['spec'] [as 别名]
def test_stack_plot(show=False):
abslin1 = AbsLine(1548.195*u.AA)
abslin2 = AbsLine('CIV 1550')
# no spectrum first
ltap.stack_plot([abslin1], show=show)
# Set spectrum
spec = ltsio.readspec(data_path('UM184_nF.fits')) # already normalized
abslin1.analy['spec'] = spec
abslin1.analy['wvlim'] = [6079.78, 6168.82]*u.AA
abslin1.attrib['z'] = 2.92929
ltap.stack_plot([abslin1], show=show)
# second line
abslin2.analy['spec'] = spec
abslin2.analy['wvlim'] = [6079.78, 6168.82]*u.AA
abslin2.attrib['z'] = 2.92929
ltap.stack_plot([abslin1, abslin2], show=show)
示例2: mk_comp
# 需要导入模块: from linetools.spectralline import AbsLine [as 别名]
# 或者: from linetools.spectralline.AbsLine import analy['spec'] [as 别名]
def mk_comp(ctype,vlim=[-300.,300]*u.km/u.s,add_spec=False, use_rand=True,
add_trans=False, zcomp=2.92939, b=20*u.km/u.s):
# Read a spectrum Spec
if add_spec:
xspec = lsio.readspec(lt_path+'/spectra/tests/files/UM184_nF.fits')
else:
xspec = None
# AbsLines
if ctype == 'HI':
all_trans = ['HI 1215', 'HI 1025']
elif ctype == 'SiII':
all_trans = ['SiII 1260', 'SiII 1304', 'SiII 1526', 'SiII 1808']
if add_trans:
all_trans += ['SiII 1193']
abslines = []
for trans in all_trans:
iline = AbsLine(trans, z=zcomp)
if use_rand:
rnd = np.random.rand()
else:
rnd = 0.
iline.attrib['logN'] = 13.3 + rnd
iline.attrib['sig_logN'] = 0.15
iline.attrib['flag_N'] = 1
iline.attrib['b'] = b
iline.analy['spec'] = xspec
iline.limits.set(vlim)
_,_ = ltaa.linear_clm(iline.attrib) # Loads N, sig_N
abslines.append(iline)
# Component
abscomp = AbsComponent.from_abslines(abslines)
return abscomp, abslines
示例3: test_voigt_model
# 需要导入模块: from linetools.spectralline import AbsLine [as 别名]
# 或者: from linetools.spectralline.AbsLine import analy['spec'] [as 别名]
def test_voigt_model():
from astropy.modeling import fitting
# Wavelength array
wave = np.linspace(3644, 3650, 100)*u.AA
# HI line
abslin = AbsLine(1215.670*u.AA, z=2.)
abslin.attrib['N'] = 10**14./u.cm**2
abslin.attrib['b'] = 25.*u.km/u.s
# Voigt
vmodel = abslin.generate_voigt(wave=wave)
vmodel.sig = 0.1
# Voigt fit
abslin.analy['spec'] = vmodel
abslin.limits.set([-100.,100]*u.km/u.s)
abslin.measure_aodm(normalize=False) # Sets analysis pixels
fitvoigt = lav.single_voigt_model(logN=np.log10(abslin.attrib['N'].value),
b=abslin.attrib['b'].value, z=2., wrest=abslin.wrest.value,
gamma=abslin.data['gamma'].value,
f=abslin.data['f'], fwhm=3.)
# Restrict parameter space
fitvoigt.logN.min = 12.
fitvoigt.b.min = 10.
fitvoigt.z.min = 2. + -100. * (1 + 2.) / c_kms
fitvoigt.z.max = 2. + 100 * (1 + 2.) / c_kms
# Fit
fitter = fitting.LevMarLSQFitter()
parm = fitter(fitvoigt,vmodel.wavelength[abslin.analy['pix']].value,
vmodel.flux[abslin.analy['pix']].value)
assert np.abs(parm.logN.value-np.log10(abslin.attrib['N'].value)) < 0.1
示例4: stack_plot
# 需要导入模块: from linetools.spectralline import AbsLine [as 别名]
# 或者: from linetools.spectralline.AbsLine import analy['spec'] [as 别名]
def stack_plot(self, inp, use_lines=None, ymnx=None, add_lines=None, **kwargs):
""" Generate a stack plot of the key lines for a given COS-Halos system
Parameters
----------
inp : int or tuple
int -- Index of the cgm_abs list
tuple -- (field,gal_id)
add_lines : list, optional
List of additional lines to plot
"""
# Init
from linetools.analysis import plots as ltap
if ymnx is None:
ymnx=(-0.1,1.2)
cgm_abs = self[inp]
abs_lines = []
# Setup the lines (defaults to a key seto)
if use_lines is None:
use_lines = [1215.6700, 1025.7223, 1334.5323, 977.020, 1031.9261, 1037.6167,
1260.4221, 1206.500, 1393.7550, 2796.352]*u.AA
if add_lines is not None:
use_lines = list(use_lines.value) + add_lines
use_lines.sort()
use_lines = use_lines*u.AA
for iline in use_lines:
spec = self.load_bg_cos_spec(inp, iline)
if spec is None:
print('Skipping {:g}. Assuming no coverage'.format(iline))
aline = AbsLine(iline, closest=True)
aline.analy['spec'] = spec
aline.attrib['z'] = cgm_abs.galaxy.z
abs_lines.append(aline)
# Execute
ltap.stack_plot(abs_lines, vlim=[-400., 400]*u.km/u.s, ymnx=ymnx, **kwargs)
示例5: abslines_from_VPfile
# 需要导入模块: from linetools.spectralline import AbsLine [as 别名]
# 或者: from linetools.spectralline.AbsLine import analy['spec'] [as 别名]
def abslines_from_VPfile(parfile,specfile=None,ra=None,dec=None):
'''
Takes a joebvp parameter file and builds a list of linetools AbsLines from the measurements therein.
Parameters
----------
parfile : str
Name of the parameter file in the joebvp format
ra : float, optional
Right Ascension of the QSO in decimal degrees
dec : float, optional
Declination of the QSO in decimal degress
Returns
-------
abslinelist: list
List of AbsLine objects
'''
from linetools.spectralline import AbsLine
from linetools.lists.linelist import LineList
import astropy.units as u
llist = LineList('ISM')
if specfile!=None:
spec=readspec(specfile) # Allow spectrum file to be declared in call
linetab = ascii.read(parfile) # Read parameters from file
linetab['restwave']=linetab['restwave']*u.AA
abslinelist = [] # Initiate list to populate
for i,row in enumerate(linetab):
### Check to see if errors for this line are defined
colerr,berr,velerr=get_errors(linetab,i)
### Adjust velocity limits according to centroid errors and limits from file
vcentmin = row['vel']-velerr
vcentmax = row['vel']+velerr
v1 = vcentmin + row['vlim1']
v2 = vcentmax + row['vlim2']
line=AbsLine(row['restwave']*u.AA, z=row['zsys'],closest=True, linelist=llist)
vlims=[v1,v2]*u.km/u.s
line.limits.set(vlims)
### Set other parameters
line.attrib['logN'] = row['col']
line.attrib['sig_logN'] = colerr
line.attrib['b'] = row['bval'] * u.km/u.s
line.attrib['sig_b'] = berr * u.km/u.s
line.attrib['vel'] = row['vel'] * u.km/u.s
### Attach the spectrum to this AbsLine but check first to see if this one is same as previous
if specfile==None:
if i==0:
spec=readspec(row['specfile'])
elif row['specfile']!=linetab['specfile'][i-1]:
spec=readspec(row['specfile'])
else:
pass
line.analy['spec']=spec
### Add it to the list and go on
abslinelist.append(line)
return abslinelist
示例6: plot_absline
# 需要导入模块: from linetools.spectralline import AbsLine [as 别名]
# 或者: from linetools.spectralline.AbsLine import analy['spec'] [as 别名]
def plot_absline(iinp,logN,b, show=True):
"""Plot an absorption line with N,b properties
Parameters
----------
iinp : float or str
Rest wavelength (Ang) or name of transition (e.g. CIV1548)
logN : float
Log10 column
b : float
Doppler parameter (km/s)
show : bool
Whether to display the plot (set False for running
tests). Default True.
"""
import numpy as np
from linetools.spectralline import AbsLine
from astropy import units as u
# Search for the closest absline
if isinstance(iinp,basestring):
aline = AbsLine(iinp, closest=True)
else:
aline = AbsLine(iinp*u.AA, closest=True)
wrest = aline.wrest.value
# Generate a fake wavelength array near the line
wvoff = 50. # Ang
dwv = wrest/100000. # Ang (echelle)
wave = np.arange(wrest-wvoff, wrest+wvoff, dwv)
# Generate spectrum with voigt
aline.attrib['N'] = 10**logN * u.cm**-2
aline.attrib['b'] = b * u.km/u.s
xspec = aline.generate_voigt(wave=wave*u.AA)
# get the plotting limits
# remove first and last pixels
fl = xspec.flux.value[1:-2]
ind = np.flatnonzero(fl < 1 - 0.1 * (1 - np.min(fl)))
ind += 1
wmin = xspec.wavelength[max(0, ind[0] - 10)]
wmax = xspec.wavelength[min(len(xspec.flux) - 1, ind[-1] + 10)]
#import pdb; pdb.set_trace()
xspec.constant_sig(0.1) # S/N = 10 per pix
# Calculate EW
aline.analy['spec'] = xspec
aline.analy['wvlim'] = np.array([wrest-15., wrest+15])*u.AA
aline.measure_ew()
print(aline)
print('EW = {:g}'.format(aline.attrib['EW']))
# Plot
xspec.plot(xlim=(wmin.to(u.AA).value, wmax.to(u.AA).value), show=show)
示例7: test_measurekin_absline
# 需要导入模块: from linetools.spectralline import AbsLine [as 别名]
# 或者: from linetools.spectralline.AbsLine import analy['spec'] [as 别名]
def test_measurekin_absline():
# Test Simple kinematics
abslin = AbsLine('NiII 1741',z=2.307922)
# Set spectrum
abslin.analy['spec'] = lsio.readspec(data_path('PH957_f.fits'))
abslin.limits.set([-70., 70.]*u.km/u.s)
# Measure Kin
abslin.measure_kin()
np.testing.assert_allclose(abslin.attrib['kin']['Dv'].value, 75.)
np.testing.assert_allclose(abslin.attrib['kin']['fedg'], 0.20005782376000183)
示例8: test_dicts
# 需要导入模块: from linetools.spectralline import AbsLine [as 别名]
# 或者: from linetools.spectralline.AbsLine import analy['spec'] [as 别名]
def test_dicts():
# Init HI Lya
abslin = AbsLine(1215.6700*u.AA)
abslin.analy['spec'] = 'tmp.fits'
adict = abslin.to_dict()
assert isinstance(adict, dict)
# Write
#pdb.set_trace()
ltu.savejson('tmp.json', adict, overwrite=True)
# Read
newdict = ltu.loadjson('tmp.json')
newlin = SpectralLine.from_dict(newdict)
assert newlin.name == 'HI 1215'
示例9: test_gaussew_absline
# 需要导入模块: from linetools.spectralline import AbsLine [as 别名]
# 或者: from linetools.spectralline.AbsLine import analy['spec'] [as 别名]
def test_gaussew_absline():
# Text Gaussian EW evaluation
# Init CIV 1548
abslin = AbsLine('CIV 1548', z=2.9304)
# Set spectrum
abslin.analy['spec'] = lsio.readspec(data_path('UM184_nF.fits')) # Fumagalli+13 MagE spectrum
abslin.limits.set([6080.78, 6087.82]*u.AA)
# Measure EW (not rest-frame)
abslin.measure_ew(flg=2)
ew = abslin.attrib['EW']
np.testing.assert_allclose(ew.value, 1.02,atol=0.01)
assert ew.unit == u.AA
abslin.measure_ew(flg=2,initial_guesses=(0.5,6081,1))
示例10: test_synthesize_colm
# 需要导入模块: from linetools.spectralline import AbsLine [as 别名]
# 或者: from linetools.spectralline.AbsLine import analy['spec'] [as 别名]
def test_synthesize_colm():
# Read a spectrum Spec
xspec = lsio.readspec(lt_path+'/spectra/tests/files/UM184_nF.fits')
# AbsLines
SiIItrans = ['SiII 1260', 'SiII 1304', 'SiII 1526', 'SiII 1808']
abslines = []
for trans in SiIItrans:
iline = AbsLine(trans)
iline.attrib['z'] = 2.92939
iline.analy['vlim'] = [-250.,80.]*u.km/u.s
iline.analy['spec'] = xspec
abslines.append(iline)
# Component
abscomp = AbsComponent.from_abslines(abslines)
# Column
abscomp.synthesize_colm(redo_aodm=True)
# Test
np.testing.assert_allclose(abscomp.logN,13.594447075294818)
示例11: test_boxew_absline
# 需要导入模块: from linetools.spectralline import AbsLine [as 别名]
# 或者: from linetools.spectralline.AbsLine import analy['spec'] [as 别名]
def test_boxew_absline():
# Text boxcar EW evaluation
# Init CIV 1548
abslin = AbsLine('CIV 1548', z=2.9304)
# Set spectrum
abslin.analy['spec'] = lsio.readspec(data_path('UM184_nF.fits')) # Fumagalli+13 MagE spectrum
abslin.limits.set([6080.78, 6087.82]*u.AA)
# Measure EW (not rest-frame)
abslin.measure_ew()
ew = abslin.attrib['EW']
np.testing.assert_allclose(ew.value, 0.9935021012055584)
assert ew.unit == u.AA
abslin.measure_restew()
restew = abslin.attrib['EW']
np.testing.assert_allclose(restew.value, 0.9935021012055584/(1+abslin.z))
示例12: test_cog
# 需要导入模块: from linetools.spectralline import AbsLine [as 别名]
# 或者: from linetools.spectralline.AbsLine import analy['spec'] [as 别名]
def test_cog():
# Read a spectrum Spec
xspec = lsio.readspec(lt_path+'/spectra/tests/files/UM184_nF.fits')
# AbsLines
SiIItrans = ['SiII 1260', 'SiII 1304', 'SiII 1526', 'SiII 1808']
abslines = []
for trans in SiIItrans:
iline = AbsLine(trans)
iline.attrib['z'] = 2.92939
iline.analy['vlim'] = [-250.,80.]*u.km/u.s
iline.analy['spec'] = xspec
abslines.append(iline)
# Component
abscomp = AbsComponent.from_abslines(abslines)
# COG
COG_dict = abscomp.cog(redo_EW=True)
# Test
np.testing.assert_allclose(COG_dict['logN'],13.693355878125537)
np.testing.assert_allclose(COG_dict['sig_logN'],0.054323725737309987)
示例13: plot_absline
# 需要导入模块: from linetools.spectralline import AbsLine [as 别名]
# 或者: from linetools.spectralline.AbsLine import analy['spec'] [as 别名]
def plot_absline(wrest,logN,b):
"""Plot an absorption line with N,b properties
Parameters
----------
wrest : float
Rest wavelength (Ang)
logN : float
Log10 column
b : float
Doppler parameter (km/s)
"""
import numpy as np
from linetools.spectra.xspectrum1d import XSpectrum1D
from linetools.lists.linelist import LineList
from linetools.spectralline import AbsLine
from linetools.analysis import voigt as lav
from astropy import units as u
# Search for the closest absline
aline = AbsLine(wrest*u.AA, closest=True)
# Generate a fake wavelength array near the line
wvoff = 50. # Ang
dwv = wrest/100000. # Ang (echelle)
wave = np.arange(wrest-wvoff, wrest+wvoff, dwv)
# Generate spectrum with voigt
aline.attrib['N'] = logN
aline.attrib['b'] = b * u.km/u.s
xspec = aline.generate_voigt(wave=wave*u.AA)
xspec.constant_sig(0.1) # S/N = 10 per pix
# Calculate EW
aline.analy['spec'] = xspec
aline.analy['wvlim'] = np.array([wrest-15., wrest+15])*u.AA
aline.measure_ew()
print(aline)
print('EW = {:g}'.format(aline.attrib['EW']))
# Plot
xspec.plot()
示例14: test_boxew_absline
# 需要导入模块: from linetools.spectralline import AbsLine [as 别名]
# 或者: from linetools.spectralline.AbsLine import analy['spec'] [as 别名]
def test_boxew_absline():
# Text boxcar EW evaluation
# Init CIV 1548
abslin = AbsLine(1548.195*u.AA)
# Set spectrum
abslin.analy['spec'] = lsio.readspec(data_path('UM184_nF.fits')) # Fumagalli+13 MagE spectrum
abslin.analy['wvlim'] = [6080.78, 6087.82]*u.AA
# Measure EW (not rest-frame)
abslin.measure_ew()
ew = abslin.attrib['EW']
np.testing.assert_allclose(ew.value, 0.9935021012055584)
assert ew.unit == u.AA
abslin.measure_restew()
#import pdb
#pdb.set_trace()
np.testing.assert_allclose(ew.value, 0.9935021012055584/(1+abslin.attrib['z']))
示例15: test_dicts
# 需要导入模块: from linetools.spectralline import AbsLine [as 别名]
# 或者: from linetools.spectralline.AbsLine import analy['spec'] [as 别名]
def test_dicts():
# Init HI Lya
abslin = AbsLine(1215.6700*u.AA)
abslin.analy['spec'] = 'tmp.fits'
adict = abslin.to_dict()
assert isinstance(adict, dict)
# Write
#pdb.set_trace()
ltu.savejson('tmp.json', adict, overwrite=True)
# Read
newdict = ltu.loadjson('tmp.json')
newlin = SpectralLine.from_dict(newdict)
assert newlin.name == 'HI 1215'
# Old dict for compatability
newdict.pop('limits')
newdict['analy']['vlim'] = [-150,150]*u.km/u.s
newdict['attrib']['z'] = 0.5
tmp3 = SpectralLine.from_dict(newdict)
assert newlin.name == 'HI 1215'