当前位置: 首页>>代码示例>>Python>>正文


Python Library.transform_input方法代码示例

本文整理汇总了Python中library.Library.transform_input方法的典型用法代码示例。如果您正苦于以下问题:Python Library.transform_input方法的具体用法?Python Library.transform_input怎么用?Python Library.transform_input使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在library.Library的用法示例。


在下文中一共展示了Library.transform_input方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: WeightedDataTemplates

# 需要导入模块: from library import Library [as 别名]
# 或者: from library.Library import transform_input [as 别名]
class WeightedDataTemplates(object):
    def __init__(self, config): 
        """
        This class implements the data-template-based trend detection technique
        presented by Nikolov 
        (http://dspace.mit.edu/bitstream/handle/1721.1/85399/870304955.pdf)
        The auxiliary module "library" (or equivalent code) is required.
        """
        
        # set up basic member variables
        self.current_count = None
        self.total_series = []
        self.trend_weight = None
        self.non_trend_weight = None

        self.SMALL_NUMBER = 0.001

        # manage everything related to distance measurements
        self.set_up_distance_measures(config)

        # config handling
        if "series_length" in config:
            self.series_length = int(config["series_length"])  
        else:
            self.series_length = 50

        if "reference_length" in config:
            self.reference_length = int(config["reference_length"])
        else:
            self.reference_length = 210

        if "lambda" in config:
            self.Lambda = float(config["lambda"])
        else:
            self.Lambda = 1

        #if "logger" in config:
        #    self.logger = config["logger"]
        #else:
        #    self.logger = logging.getLogger("default_template_logger") 
        #self.logger = logr

        from library import Library
        if "library_file_name" in config:
            self.library = pickle.load(open(config["library_file_name"]))
        else:
            self.library = Library(config={})

        self.config = config

    def update(self, **kwargs):
        """
        Calculate trend weights for time series based on latest data. 
        """
        
        # this must always exist
        current_count = kwargs["count"]

        check_for_self = False
        if "check_for_self" in kwargs:
            check_for_self = kwargs["check_for_self"]
           
        # add current data point to series 
        self.total_series.append(current_count)

        # don't return anything meaningful until total_series is long enough
        if len(self.total_series) < self.reference_length or sum(self.total_series) == 0: 
            self.trend_weight = float(0)
            self.non_trend_weight = float(0)
            return

        # transform a "reference_length"-sized sub-series
        #transformed_series = self.total_series[-self.reference_length:]
        #for transformation in self.library.test_transformations:
        #    transformed_series = transformation(transformed_series,self.config) 
        transformed_series = self.library.transform_input(self.total_series[-self.reference_length:],is_test_series=True,config=self.config)
        # get correctly-sized test series
        test_series =  transformed_series[-self.series_length:]

        self.trend_weight = float(0)
        for reference_series in self.library.trends:  
            weight = self.weight(reference_series,test_series,check_for_self) 
            #self.logger.debug("trend wt: {}".format(weight))
            self.trend_weight += weight
        
        self.non_trend_weight = float(0)
        for reference_series in self.library.non_trends: 
            weight = self.weight(reference_series,test_series,check_for_self)
            #self.logger.debug("non trend wt: {}".format(weight))
            self.non_trend_weight += weight

    def get_result(self):
        """
        Return result or figure-of-merit (ratio of weights, in this case) defined by the mode of operation
        """
        if self.trend_weight is None or self.non_trend_weight is None:
            return -1
        if self.non_trend_weight == 0:
            self.non_trend_weight = self.SMALL_NUMBER

#.........这里部分代码省略.........
开发者ID:arunlodhi,项目名称:Gnip-Trend-Detection,代码行数:103,代码来源:models.py


注:本文中的library.Library.transform_input方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。