当前位置: 首页>>代码示例>>Python>>正文


Python nodedata.NodeData类代码示例

本文整理汇总了Python中libpgm.nodedata.NodeData的典型用法代码示例。如果您正苦于以下问题:Python NodeData类的具体用法?Python NodeData怎么用?Python NodeData使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了NodeData类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: setUp

 def setUp(self):
     skel = GraphSkeleton()
     skel.load("unittestdict.txt")
     skel.toporder()
     nodedata = NodeData()
     nodedata.load("unittestdict.txt")
     self.instance = DiscreteBayesianNetwork(skel, nodedata)
开发者ID:CyberPoint,项目名称:libpgm,代码行数:7,代码来源:run_unit_tests.py

示例2: q_without_ros

def q_without_ros():
    skel = GraphSkeleton()
    skel.V = ["prize_door", "guest_door", "monty_door"]
    skel.E = [["prize_door", "monty_door"],
              ["guest_door", "monty_door"]]
    skel.toporder()
    nd = NodeData()
    nd.Vdata = {
        "prize_door": {
            "numoutcomes": 3,
            "parents": None,
            "children": ["monty_door"],
            "vals": ["A", "B", "C"],
            "cprob": [1.0/3, 1.0/3, 1.0/3],
        },
        "guest_door": {
            "numoutcomes": 3,
            "parents": None,
            "children": ["monty_door"],
            "vals": ["A", "B", "C"],
            "cprob": [1.0/3, 1.0/3, 1.0/3],
        },
        "monty_door": {
            "numoutcomes": 3,
            "parents": ["prize_door", "guest_door"],
            "children": None,
            "vals": ["A", "B", "C"],
            "cprob": {
                "['A', 'A']": [0., 0.5, 0.5],
                "['B', 'B']": [0.5, 0., 0.5],
                "['C', 'C']": [0.5, 0.5, 0.],
                "['A', 'B']": [0., 0., 1.],
                "['A', 'C']": [0., 1., 0.],
                "['B', 'A']": [0., 0., 1.],
                "['B', 'C']": [1., 0., 0.],
                "['C', 'A']": [0., 1., 0.],
                "['C', 'B']": [1., 0., 0.],
            },
        },
    }
    bn = DiscreteBayesianNetwork(skel, nd)
    fn = TableCPDFactorization(bn)

    query = {
        "prize_door": ["A","B","C"],
    }
    evidence = {
        "guest_door": "A",
        "monty_door": "B",
    }

    res = fn.condprobve(query, evidence)
    print res.vals
    print res.scope
    print res.card
    print res.stride
开发者ID:1224830613,项目名称:jsk_3rdparty,代码行数:56,代码来源:discrete_bayesian_query_sample.py

示例3: TestNodeData

class TestNodeData(unittest.TestCase):

    def setUp(self):
        self.nd = NodeData()

    def test_entriestoinstances(self):
        self.nd.load("unittesthdict.txt")
        self.nd.entriestoinstances()
        result = self.nd.nodes["Intelligence"].choose([])
        self.assertTrue(result == 'low' or result == 'high')
开发者ID:CyberPoint,项目名称:libpgm,代码行数:10,代码来源:run_unit_tests.py

示例4: getTableCPD

def getTableCPD():
   nd = NodeData()
   skel = GraphSkeleton()
   jsonpath = "job_interview.txt"
   nd.load(jsonpath)
   skel.load(jsonpath)

   #load bayesian network
   bn = DiscreteBayesianNetwork(skel, nd)
   tablecpd = TableCPDFactorization(bn)
   return tablecpd
开发者ID:gregory2000,项目名称:pycharm_projects,代码行数:11,代码来源:causal_reasoning.py

示例5: test_query

 def test_query(self):
     teacher_nd = NodeData()
     teacher_nd.load(self.teacher_data_path)
     req = DiscreteQueryRequest()
     req.nodes = U.discrete_nodes_to_ros(teacher_nd.Vdata)
     req.evidence = [DiscreteNodeState("Letter", "weak")]
     req.query = ["Grade"]
     res = self.query(req)
     self.assertEqual(len(res.nodes), 1)
     n = res.nodes[0]
     self.assertEqual(n.name, "Grade")
     self.assertListEqual(['A','B','C'], n.outcomes)
开发者ID:1224830613,项目名称:jsk_3rdparty,代码行数:12,代码来源:test_discrete_bn.py

示例6: load

    def load(self, file_name):
        #### Load BN
        nd = NodeData()
        skel = GraphSkeleton()
        nd.load(file_name)  # any input file
        skel.load(file_name)

        # topologically order graphskeleton
        skel.toporder()

        super(DiscreteBayesianNetworkExt, self).__init__(skel, nd)
        ##TODO load evidence
开发者ID:aurora1625,项目名称:sally-bn,代码行数:12,代码来源:DiscreteBayesianNetworkExt.py

示例7: TestDynDiscBayesianNetwork

class TestDynDiscBayesianNetwork(unittest.TestCase):

    def setUp(self):
        self.nd = NodeData()
        self.nd.load("unittestdyndict.txt")
        self.skel = GraphSkeleton()
        self.skel.load("unittestdyndict.txt")
        self.skel.toporder()
        self.d = DynDiscBayesianNetwork(self.skel, self.nd)

    def test_randomsample(self):
        sample = self.d.randomsample(10)
        for i in range(1, 10):
            self.assertEqual(sample[0]['Difficulty'], sample[i]['Difficulty'])
开发者ID:CyberPoint,项目名称:libpgm,代码行数:14,代码来源:run_unit_tests.py

示例8: TestHyBayesianNetwork

class TestHyBayesianNetwork(unittest.TestCase):

    def setUp(self):
        self.nd = NodeData()
        self.nd.load("unittesthdict.txt")
        self.nd.entriestoinstances()
        self.skel = GraphSkeleton()
        self.skel.load("unittestdict.txt")
        self.skel.toporder()
        self.hybn = HyBayesianNetwork(self.skel, self.nd)

    def test_randomsample(self):
        sample = self.hybn.randomsample(1)[0]
        self.assertTrue(isinstance(sample['Grade'], float))
        self.assertTrue(isinstance(sample['Intelligence'], str))
        self.assertEqual(sample["SAT"][-12:], 'blueberries!')
开发者ID:CyberPoint,项目名称:libpgm,代码行数:16,代码来源:run_unit_tests.py

示例9: createData

def createData():
   nd = NodeData()
   skel = GraphSkeleton()
   fpath = "job_interview.txt"
   nd.load(fpath)
   skel.load(fpath)
   skel.toporder()
   bn = DiscreteBayesianNetwork(skel, nd)

   learner = PGMLearner()
   data = bn.randomsample(1000)
   X, Y = 'Grades', 'Offer'
   c,p,w=learner.discrete_condind(data, X, Y, ['Interview'])
   print "independence between X and Y: ", c, " p-value ", p, " witness node: ", w
   result = learner.discrete_constraint_estimatestruct(data)
   print result.E
开发者ID:gregory2000,项目名称:pycharm_projects,代码行数:16,代码来源:learn_structure.py

示例10: net2

def net2():
    nd = NodeData()
    skel = GraphSkeleton()
    nd.load("net.txt")  # an input file
    skel.load("net.txt")

    # topologically order graphskeleton
    skel.toporder()

    # load bayesian network
    lgbn = LGBayesianNetwork(skel, nd)

    in_data=read_data.getdata2()
    learner = PGMLearner()
    bn=learner.lg_mle_estimateparams(skel,in_data)

    p=cal_prob(in_data[300:500],bn)
    print p
    return 0
开发者ID:hendrikTpl,项目名称:Bayesian_TrafficPrediction,代码行数:19,代码来源:model2.py

示例11: test_structure_estimation

    def test_structure_estimation(self):
        req = DiscreteStructureEstimationRequest()

        skel = GraphSkeleton()
        skel.load(self.data_path)
        skel.toporder()
        teacher_nd = NodeData()
        teacher_nd.load(self.teacher_data_path)
        bn = DiscreteBayesianNetwork(skel, teacher_nd)
        data = bn.randomsample(8000)
        for v in data:
            gs = DiscreteGraphState()
            for k_s, v_s in v.items():
                gs.node_states.append(DiscreteNodeState(node=k_s, state=v_s))
            req.states.append(gs)

        res = self.struct_estimate(req)
        self.assertIsNotNone(res.graph)
        self.assertEqual(len(res.graph.nodes), 5)
        self.assertGreater(len(res.graph.edges), 0)
开发者ID:1224830613,项目名称:jsk_3rdparty,代码行数:20,代码来源:test_discrete_bn.py

示例12: setUp

    def setUp(self):
        # instantiate learner
        self.l = PGMLearner()

        # generate graph skeleton
        skel = GraphSkeleton()
        skel.load("unittestdict.txt")
        skel.toporder()

        # generate sample sequence to try to learn from - discrete
        nd = NodeData.load("unittestdict.txt")
        self.samplediscbn = DiscreteBayesianNetwork(nd)
        self.samplediscseq = self.samplediscbn.randomsample(5000)

        # generate sample sequence to try to learn from - discrete
        nda = NodeData.load("unittestlgdict.txt")
        self.samplelgbn = LGBayesianNetwork(nda)
        self.samplelgseq = self.samplelgbn.randomsample(10000)

        self.skel = skel
开发者ID:Anaphory,项目名称:libpgm,代码行数:20,代码来源:run_unit_tests.py

示例13: test_param_estimation

    def test_param_estimation(self):
        req = DiscreteParameterEstimationRequest()

        # load graph structure
        skel = GraphSkeleton()
        skel.load(self.data_path)
        req.graph.nodes = skel.V
        req.graph.edges = [GraphEdge(k, v) for k,v in skel.E]
        skel.toporder()

        # generate trial data
        teacher_nd = NodeData()
        teacher_nd.load(self.teacher_data_path)
        bn = DiscreteBayesianNetwork(skel, teacher_nd)
        data = bn.randomsample(200)
        for v in data:
            gs = DiscreteGraphState()
            for k_s, v_s in v.items():
                gs.node_states.append(DiscreteNodeState(node=k_s, state=v_s))
            req.states.append(gs)

        self.assertEqual(len(self.param_estimate(req).nodes), 5)
开发者ID:1224830613,项目名称:jsk_3rdparty,代码行数:22,代码来源:test_discrete_bn.py

示例14: main

def main():

    in_data=read_data.getdata()
    f_data=format_data(in_data)
    nd = NodeData()
    nd.load("net4.txt")    # an input file
    skel = GraphSkeleton()
    skel.load("net4.txt")
    skel.toporder()
    bn=DiscreteBayesianNetwork(skel,nd)


#training dataset:70%
    bn2=em(f_data[1:6000],bn,skel)

    pr_training = precision(f_data[1:6000],bn2)

    print "Prediction accuracy for training data:" , pr_training[1]

#testing dataset:30%
    pr=precision(f_data[6700:6800],bn2)
    print "Prediction accuracy for test data:", pr[1]
开发者ID:hendrikTpl,项目名称:Bayesian_TrafficPrediction,代码行数:22,代码来源:model2.py

示例15: LinearGaussianParameterEstimationRequest

    param_estimate = rospy.ServiceProxy(
        "pgm_learner/linear_gaussian/parameter_estimation", LinearGaussianParameterEstimation
    )

    req = LinearGaussianParameterEstimationRequest()

    dpath = os.path.join(PKG_PATH, "test", "graph-test.txt")
    tpath = os.path.join(PKG_PATH, "test", "graph-lg-test.txt")

    # load graph structure
    skel = GraphSkeleton()
    skel.load(dpath)
    req.graph.nodes = skel.V
    req.graph.edges = [GraphEdge(k, v) for k, v in skel.E]
    skel.toporder()

    # generate trial data
    teacher_nd = NodeData()
    teacher_nd.load(tpath)
    bn = LGBayesianNetwork(skel, teacher_nd)
    data = bn.randomsample(200)

    for v in data:
        gs = LinearGaussianGraphState()
        for k_s, v_s in v.items():
            gs.node_states.append(LinearGaussianNodeState(node=k_s, state=v_s))
        req.states.append(gs)

    PP.pprint(param_estimate(req).nodes)
开发者ID:1224830613,项目名称:jsk_3rdparty,代码行数:29,代码来源:linear_gaussian_bayesian_parameter_estimation_sample.py


注:本文中的libpgm.nodedata.NodeData类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。