本文整理汇总了Python中libdvid.DVIDNodeService.get方法的典型用法代码示例。如果您正苦于以下问题:Python DVIDNodeService.get方法的具体用法?Python DVIDNodeService.get怎么用?Python DVIDNodeService.get使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类libdvid.DVIDNodeService
的用法示例。
在下文中一共展示了DVIDNodeService.get方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_keyvalue
# 需要导入模块: from libdvid import DVIDNodeService [as 别名]
# 或者: from libdvid.DVIDNodeService import get [as 别名]
def test_keyvalue(self):
node_service = DVIDNodeService(TEST_DVID_SERVER, self.uuid)
node_service.create_keyvalue("keyvalue_test")
node_service.put("keyvalue_test", "key1", "val1")
readback_value = node_service.get("keyvalue_test", "key1")
self.assertEqual(readback_value, "val1")
node_service.put("keyvalue_test", "key2", "val2")
readback_value = node_service.get("keyvalue_test", "key2")
self.assertEqual(readback_value, "val2")
keys = node_service.get_keys("keyvalue_test")
assert isinstance(keys, collections.Iterable)
assert set(keys) == set(["key1", "key2"])
with self.assertRaises(ErrMsg):
node_service.put("keyvalue_test", "key1", 123) # 123 is not a buffer.
示例2: loadFeaturesForFrame
# 需要导入模块: from libdvid import DVIDNodeService [as 别名]
# 或者: from libdvid.DVIDNodeService import get [as 别名]
def loadFeaturesForFrame(self, features, timeframe):
"""
loads feature data
"""
assert(self.server_address is not None)
assert(self.uuid is not None)
node_service = DVIDNodeService(self.server_address, self.uuid)
node_service.create_keyvalue(self.keyvalue_store)
return json.loads(node_service.get(self.keyvalue_store, "frame-{}".format(timeframe)))
示例3: test_keyvalue
# 需要导入模块: from libdvid import DVIDNodeService [as 别名]
# 或者: from libdvid.DVIDNodeService import get [as 别名]
def test_keyvalue(self):
node_service = DVIDNodeService(TEST_DVID_SERVER, self.uuid)
node_service.create_keyvalue("test_keyvalue")
node_service.put("test_keyvalue", "kkkk", "vvvv")
readback_value = node_service.get("test_keyvalue", "kkkk")
self.assertEqual(readback_value, "vvvv")
with self.assertRaises(RuntimeError):
node_service.put("test_keyvalue", "kkkk", 123) # 123 is not a buffer.
示例4: getTimeRange
# 需要导入模块: from libdvid import DVIDNodeService [as 别名]
# 或者: from libdvid.DVIDNodeService import get [as 别名]
def getTimeRange(self, Resource, PathInResource):
"""
Count Label images to derive the total number of frames
Loads label image data from local resource file in hdf5 format.
PathInResource provides the internal image path
Return tuple of (first frame, last frame)
"""
node_service = DVIDNodeService(Resource, PathInResource)
config = json.loads(node_service.get("config", "imageInfo"))
return config["time_range"]
示例5: getImageShape
# 需要导入模块: from libdvid import DVIDNodeService [as 别名]
# 或者: from libdvid.DVIDNodeService import get [as 别名]
def getImageShape(self, Resource, PathInResource):
"""
Derive Image Shape from label image.
Loads label image data from local resource file in hdf5 format.
PathInResource provides the internal image path
Return list with image dimensions
"""
node_service = DVIDNodeService(Resource, PathInResource)
config = json.loads(node_service.get("config", "imageInfo"))
self.shape = config["shape"]
return self.shape
示例6: open
# 需要导入模块: from libdvid import DVIDNodeService [as 别名]
# 或者: from libdvid.DVIDNodeService import get [as 别名]
#If key doesn't exist create it
key_info_url = '/{kv_name}/info'.format(kv_name=args.key_value_store)
try:
node_service.custom_request(key_info_url, '', ConnectionMethod.GET)
except DVIDException:
if args.insert:
create_datatype_endpoint = "{}api/repo/{}/instance".format(args.dvid, args.uuid)
print create_datatype_endpoint
payload = json.dumps({
"typename": 'keyvalue',
"dataname": args.key_value_store,
"versioned": "0",
})
u = urllib2.urlopen(create_datatype_endpoint, payload)
#node_service.custom_request(create_datatype, payload, ConnectionMethod.POST)
# Read in data
with open(args.input) as fi:
data = json.load(fi)
# Replace data in key value
if args.insert:
node_service.put(args.key_value_store, args.key_name, json.dumps(data))
if args.insert:
assert node_service.get(args.key_value_store, args.key_name)
示例7: neuroproof_agglomerate
# 需要导入模块: from libdvid import DVIDNodeService [as 别名]
# 或者: from libdvid.DVIDNodeService import get [as 别名]
def neuroproof_agglomerate(predictions, supervoxels, classifier, threshold = 0.20, mitochannel = 2):
"""Main agglomeration function
Args:
predictions = 4D float32 numpy label array (z, y, x, ch)
supervoxels = 3D uint32 numpy label array (z,y,x)
classifier = file location or DVID (assume to be xml unless .h5 is explict in name)
threshold = threshold (default = 0.20)
mitochannel = prediction channel for mito (default 2) (empty means no mito mode)
Returns:
segmentation = 3D numpy label array (z,y,x)
"""
print "neuroproof_agglomerate(): Starting with label data: dtype={}, shape={}".format(str(supervoxels.dtype), supervoxels.shape)
import numpy
# return immediately if no segmentation
if len(numpy.unique(supervoxels)) <= 1:
return supervoxels
#from neuroproof import Classifier, Agglomeration
from neuroproof import Agglomeration
import os
# verify channels
assert predictions.ndim == 4
z,y,x,nch = predictions.shape
if nch > 2:
# make sure mito is in the second channel
predictions[[[[2, mitochannel]]]] = predictions[[[[mitochannel, mitochannel]]]]
pathname = str(classifier["path"])
tempfilehold = None
tclassfile = ""
# write classifier to temporary file if stored on DVID
if "dvid-server" in classifier:
# allow user to specify any server and version for the data
dvidserver = classifier["dvid-server"]
uuid = classifier["uuid"]
# extract file and store into temporary location
from libdvid import DVIDNodeService
node_service = DVIDNodeService(str(dvidserver), str(uuid))
name_key = pathname.split('/')
classfile = node_service.get(name_key[0], name_key[1])
# create temp file
import tempfile
tempfilehold = tempfile.NamedTemporaryFile(delete=False)
# open file and write data
with open(tempfilehold.name, 'w') as fout:
fout.write(classfile)
# move temporary file to have the same extension as provided file
if pathname.endswith('.h5'):
tclassfile = tempfilehold.name + ".h5"
else:
tclassfile = tempfilehold.name + ".xml"
os.rename(tempfilehold.name, tclassfile)
else:
# just read from directory
tclassfile = pathname
# load classifier from file
#classifier = loadClassifier(tclassfile)
# run agglomeration (supervoxels must be 32 uint and predicitons must be float32)
segmentation = Agglomeration.agglomerate(supervoxels.astype(numpy.uint32), predictions.astype(numpy.float32), tclassfile, threshold)
if tempfilehold is not None:
os.remove(tclassfile)
return segmentation