本文整理汇总了Python中lib.dbtools.connections.Connections.exec_sql方法的典型用法代码示例。如果您正苦于以下问题:Python Connections.exec_sql方法的具体用法?Python Connections.exec_sql怎么用?Python Connections.exec_sql使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类lib.dbtools.connections.Connections
的用法示例。
在下文中一共展示了Connections.exec_sql方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: trade_frequency
# 需要导入模块: from lib.dbtools.connections import Connections [as 别名]
# 或者: from lib.dbtools.connections.Connections import exec_sql [as 别名]
def trade_frequency():
query = """select security_id, EXCHANGE from KGR..INDEXCOMPONENT where INDEXID = 'IND_1' and DATE = '20130905' """
result = Connections.exec_sql('KGR', query, as_dataframe = True)
eurostoxx_components = result[np.isfinite(result['security_id'])]['security_id']
#print eurostoxx_components, len(eurostoxx_components)
frame = pd.DataFrame()
frame_turnover = pd.DataFrame()
for stock in eurostoxx_components:
query = """select date, nb_deal, open_prc, high_prc, low_prc, close_prc, turnover from trading_daily where security_id = %s and trading_destination_id is NULL and DATE >= '20080101' """ % stock
trading_data = Connections.exec_sql('MARKET_DATA', query, as_dataframe = True)
trading_data.index = trading_data['date']
if( len(trading_data[np.isfinite(trading_data['nb_deal'])]) < 900):
continue
trading_data['vol'] = vol_gk(trading_data['open_prc'], trading_data['high_prc'], trading_data['low_prc'],trading_data['close_prc'], )
trading_data['ratio'] = np.sqrt(trading_data['nb_deal']) / trading_data['vol']
#trading_data['ratio'] = trading_data['nb_deal'] / trading_data['turnover']
#frame = frame.join(trading_data['nb_deal'], how = "outer", rsuffix = "%s_" % int(stock))
frame = frame.join(trading_data['ratio'], how = "outer", rsuffix = "%s_" % int(stock))
frame_turnover = frame_turnover.join(trading_data['turnover'], how = "outer", rsuffix = "%s_" % int(stock))
frame['sum'] = frame.sum(axis = 1)
frame_turnover['sum'] = frame_turnover.sum(axis = 1)
return frame, frame_turnover
示例2: get_reference_param
# 需要导入模块: from lib.dbtools.connections import Connections [as 别名]
# 或者: from lib.dbtools.connections.Connections import exec_sql [as 别名]
def get_reference_param(context_id,domain_id,estimator_id):
params=pd.DataFrame()
context_name=None
#-- params
query=""" SELECT parameter_name, value, x_value
FROM QUANT..quant_param
WHERE context_id = %d and domain_id = %d and estimator_id = %d """ % (context_id,domain_id,estimator_id)
vals = Connections.exec_sql('QUANT',query,schema = True)
if not vals[0]:
logging.info('nothing in quant_param')
else:
params = pd.DataFrame.from_records(vals[0],columns=vals[1])
#-- params
query=""" SELECT context_name
FROM QUANT..context
WHERE context_id = %d and estimator_id = %d """ % (context_id,estimator_id)
vals = Connections.exec_sql('QUANT',query,schema = True)
if not vals[0]:
logging.info('nothing in context')
else:
context_name = vals[0][0][0]
return params,context_name
示例3: check_db_update
# 需要导入模块: from lib.dbtools.connections import Connections [as 别名]
# 或者: from lib.dbtools.connections.Connections import exec_sql [as 别名]
def check_db_update(date):
out = False
try:
date_s = dt.datetime.strftime(date.date(),'%Y%m%d')
date_e = dt.datetime.strftime((date + dt.timedelta(days=1)).date(),'%Y%m%d')
date_f = dt.datetime.strftime((date - dt.timedelta(days=1)).date(),'%Y%m%d')
query=""" SELECT date , jobname ,status
FROM MARKET_DATA..ciupdate_report
WHERE date >= '%s' and date < '%s' """ % (date_f,date_e)
vals = Connections.exec_sql('MARKET_DATA',query,schema = True)
if not vals[0]:
logging.warning('No info of indicator update for date : ' + date_s)
else:
data = pd.DataFrame.from_records(vals[0],columns=vals[1])
#-- ciupdatesecurityindicator_all : day before
if any((data['jobname'] == 'ciupdatesecurityindicator_all') & (data['date'] >= dt.datetime.strptime(date_f,'%Y%m%d'))):
out = any(data[(data['jobname'] == 'ciupdatesecurityindicator_all') & (data['date'] >= dt.datetime.strptime(date_f,'%Y%m%d'))]['status'].values == 'O')
#-- ciupdatesecurityindicator_all : day before
if out and any((data['jobname'] == 'ciupdatesecurityindicator_ost') & (data['date'] >= dt.datetime.strptime(date_s,'%Y%m%d'))):
out = any(data[(data['jobname'] == 'ciupdatesecurityindicator_ost') & (data['date'] >= dt.datetime.strptime(date_s,'%Y%m%d'))]['status'].values == 'O')
if not out:
logging.warning('Indicator database has not been update properly for date : ' + date_s)
except:
logging.error('error in check_db_update func')
return out
示例4: check_db_update
# 需要导入模块: from lib.dbtools.connections import Connections [as 别名]
# 或者: from lib.dbtools.connections.Connections import exec_sql [as 别名]
def check_db_update(date):
out = False
try:
date_s = dt.datetime.strftime(date.date(),'%Y%m%d')
date_e = dt.datetime.strftime((date + dt.timedelta(days=1)).date(),'%Y%m%d')
query=""" SELECT date , jobname ,status
FROM QUANT..upd_quant_data_report
WHERE date >= '%s' and date < '%s' """ % (date_s,date_e)
vals = Connections.exec_sql('QUANT',query,schema = True)
if not vals[0]:
logging.warning('No info of curve update for date : ' + date_s)
else:
data = pd.DataFrame.from_records(vals[0],columns=vals[1])
#-- upd_quant_data
if any(data['jobname'] == 'upd_quant_data'):
out = data[data['jobname'] == 'upd_quant_data']['status'].values[0] == 'O'
#--- quant_reference_update_context
if out and any(data['jobname'] == 'quant_reference_update_context'):
out = data[data['jobname'] == 'quant_reference_update_context']['status'].values[0] == 'O'
if not out:
logging.warning('Curve database has not been update properly for date : ' + date_s)
except:
logging.error('error in check_db_update func')
return out
示例5: get_reference_run
# 需要导入模块: from lib.dbtools.connections import Connections [as 别名]
# 或者: from lib.dbtools.connections.Connections import exec_sql [as 别名]
def get_reference_run(estimator_id=None,level=None):
out=pd.DataFrame()
if estimator_id == 2:
#-- query
if level is None:
raise ValueError('level is mandatory')
elif level == 'specific':
query=""" SELECT context_id, domain_id, estimator_id, security_id, EXCHANGE, rank, active, default_context, run_id, varargin
FROM QUANT..quant_reference
WHERE security_id is not null and estimator_id = %d and active = 1
ORDER BY security_id, EXCHANGE, rank """ % (estimator_id)
elif level == 'generic':
query=""" SELECT context_id, domain_id, estimator_id, security_id, EXCHANGE, rank, active, default_context, run_id, varargin
FROM QUANT..quant_reference
WHERE security_id is null and estimator_id = %d and active = 1
ORDER BY varargin, EXCHANGE, rank """ % (estimator_id)
#-- query
vals = Connections.exec_sql('QUANT',query,schema = True)
if not vals[0]:
logging.info('nothing in quant_reference')
return out
out = pd.DataFrame.from_records(vals[0],columns=vals[1])
else:
raise ValueError('bad input estimator_id')
return out
示例6: get_data
# 需要导入模块: from lib.dbtools.connections import Connections [as 别名]
# 或者: from lib.dbtools.connections.Connections import exec_sql [as 别名]
def get_data():
Connections.change_connections("production")
query = """ select occ.IdOccurence,
occ.SecurityRateToEuro,
occ.SecurityId,
occ.Side,
seq.StartTime,
seq.EndTime,
seq.AutomatonName,
occ.OrderDate,
seq.AutomatonStatTime,
seq.AutomatonEndTime,
seq.ExecutedAmount,
seq.ExecutedQuantity
from dm_algo..Algo_Sequence seq, dm_algo..Algo_Occurence occ
where occ.OrderDate > '20130101' and occ.OrderDate < '20130201'
and occ.IdOccurence = seq.IdOccurence
and seq.ExecutedQuantity is not NULL"""
#query = """select top 10 * from dm_algo..Algo_Occurence """
result = Connections.exec_sql("VEGA", query, as_dict = True)
print "Fetched", len(result), "lines"
keys = result[0].keys()
f = open("C:/st_sim/repository/export_cheuvreux_orders.csv", "w")
f.writelines(";".join(keys)+"\n")
for k in result:
f.writelines(";".join([str(x) for x in k.values()]) + "\n")
f.close()
示例7: daily_vs_auction
# 需要导入模块: from lib.dbtools.connections import Connections [as 别名]
# 或者: from lib.dbtools.connections.Connections import exec_sql [as 别名]
def daily_vs_auction():
query = """select security_id, date, turnover, close_turnover from MARKET_DATA..trading_daily where
trading_destination_id is NULL and
security_id=110 and
date > '20120101'"""
df = Connections.exec_sql("MARKET_DATA", query, as_dataframe = True)
plt.plot(df["close_turnover"], df["turnover"]-df["close_turnover"], ".")
示例8: stoxx_timeline
# 需要导入模块: from lib.dbtools.connections import Connections [as 别名]
# 或者: from lib.dbtools.connections.Connections import exec_sql [as 别名]
def stoxx_timeline():
snp = read_csv('C:/st_sim/repository/table_snp.csv', sep = ',')
snp.index = [datetime.strptime(x, '%Y-%m-%d') for x in snp['Date']]
print snp
query = """select DATE, VALUE from Market_data..HISTOINDEXTIMESERIES where INDEXID = 'IND_37' and ATTRIBUTEID = 43 and DATE > '20100101' order by DATE"""
eurostoxx = Connections.exec_sql('MARKET_DATA', query, as_dataframe = True)
eurostoxx.index = eurostoxx['DATE']
return eurostoxx, snp
示例9: export_to_csv
# 需要导入模块: from lib.dbtools.connections import Connections [as 别名]
# 或者: from lib.dbtools.connections.Connections import exec_sql [as 别名]
def export_to_csv(server, query, filename, delimiter = ';'):
result = Connections.exec_sql(server, query, as_dict = True)
f = open(filename, "w")
row = result[0]
f.write( delimiter.join(row.keys()) + '\n')
for row in result:
f.writelines( delimiter.join([str(x) if x else '' for x in row.values()]) + '\n')
f.close()
示例10: turnover_over_time
# 需要导入模块: from lib.dbtools.connections import Connections [as 别名]
# 或者: from lib.dbtools.connections.Connections import exec_sql [as 别名]
def turnover_over_time():
cac40_query = "select distinct security_id from indice_component where INDEXID = 'IND_1'"
cac40 =[str(x[0]) for x in Connections.exec_sql('KGR', cac40_query)]
query = """select security_id, date, turnover, close_turnover from Market_data..trading_daily where
trading_destination_id is NULL and
security_id in (%s) and
date > '20120101'""" % (",".join(cac40))
df = Connections.exec_sql("Market_data", query, as_dataframe = True)
dates = []
turnover = []
auction = []
for date, group in df.groupby('date'):
dates.append(datetime.strptime(date, '%Y-%m-%d' ))
turnover.append(sum(group["turnover"]))
auction.append(sum(group["close_turnover"]))
aggregate = DataFrame({"date": dates, "turnover": turnover, "auction": auction})
aggregate.index = aggregate["date"]
plt.bar(aggregate["date"], 100.0 * aggregate["auction"] / aggregate["turnover"])
plt.show()
示例11: histocurrencypair
# 需要导入模块: from lib.dbtools.connections import Connections [as 别名]
# 或者: from lib.dbtools.connections.Connections import exec_sql [as 别名]
def histocurrencypair(date = None, last_date_from = None, start_date = None, end_date = None,
currency = None, currency_ref = None,
all_business_day = None):
out = pd.DataFrame()
##############################################################
# input handling
##############################################################
#---- date info
if date is not None:
start_date = end_date = date
req_n = 1
elif last_date_from is not None:
req_n = 2
elif start_date is not None or end_date is not None:
if start_date is None or end_date is None:
raise NameError('read_dataset:histocurrencypair - Bad input for dates')
req_n = 1
#---- currencyref info
if currency_ref is not None:
raise NameError('read_dataset:histocurrencypair - currency_ref not available NOW')
else:
curr_ref=['EUR']
str_curr_ref="("+"".join(["'"+x+"'," for x in curr_ref])
str_curr_ref=str_curr_ref[:-1]+")"
#---- currency info
if currency is not None:
curr = currency
if isinstance(currency, basestring):
curr=[currency]
elif (not isinstance(currency, list)) and (not isinstance(curr, np.ndarray)):
raise NameError('read_dataset:histocurrencypair - Bad input for currency ref')
str_curr = "("+"".join(["'"+x+"'," for x in curr])
str_curr=str_curr[:-1]+")"
else:
curr=[]
str_curr=[]
##############################################################
# request and format
##############################################################
#### Build request
if req_n == 1:
req=("""SELECT
DATE,CCY,CCYREF,VALUE
FROM
KGR..HISTOCURRENCYTIMESERIES
WHERE
DATE>= '%s'
and DATE<= '%s'
and SOURCEID=1
and ATTRIBUTEID=43
and CCYREF in %s""" ) % (start_date, end_date, str_curr_ref)
elif req_n == 2:
req=( """SELECT TOP(%d)
DATE,CCY,CCYREF,VALUE
FROM
KGR..HISTOCURRENCYTIMESERIES
WHERE
DATE<= '%s'
and SOURCEID = 1
and ATTRIBUTEID = 43
and CCYREF in %s """) % (len(curr), last_date_from, str_curr_ref)
if not curr == []:
req=req+((" and CCY in %s ") % (str_curr))
req += 'ORDER BY DATE DESC '
#### EXECUTE REQUEST
vals=Connections.exec_sql('KGR',req)
#### OUTPUT
if not vals:
return out
out=pd.DataFrame.from_records(vals,columns=['date','ccy','ccyref','rate'],index=['date'])
out=out.sort_index()
##############################################################
# request and format
##############################################################
if all_business_day:
uni_currency_pair = matlabutils.uniqueext(out[['ccy','ccyref']].values,rows = True )
#-- dates
min_date = out.index[0].to_datetime()
max_date = out.index[-1].to_datetime()
all_date = []
date = min_date
while date <= max_date:
if date.weekday() not in [5, 6]:
all_date.append(date)
date += timedelta(days=1)
#-- for each cuurency pair (get the last value)
#.........这里部分代码省略.........
示例12: VWAP
# 需要导入模块: from lib.dbtools.connections import Connections [as 别名]
# 或者: from lib.dbtools.connections.Connections import exec_sql [as 别名]
dico['VWAP (no dark)'] = []
dico['VWAP (with dark)'] = []
dico['Slippage VWAP(bp)'] = []
dico['Slippage VWAP(Eur)'] = []
dico['Volume (no dark)'] = []
dico['Volume (with dark)'] = []
dico['%Volume (no dark)'] = []
dico['%Volume (with dark)'] =[]
for i in range(len(data)):
row = data.ix[i]
print row
security_id_query = "select SYMBOL6 from SECURITY where SYMBOL5 ='%s'" % row['SECID']
result = Connections.exec_sql('KGR', security_id_query)
if not result :
continue
security_id = int(result[0][0])
date = datetime.strptime(row['CREATETIME'], '%d/%m/%Y %H:%M') + timedelta(hours = 2)
start = datetime.strptime(row['CREATETIME'], '%d/%m/%Y %H:%M') + timedelta(hours = 2)
end = datetime.strptime(row['LASTFILLTIME'], '%d/%m/%Y %H:%M') + timedelta(hours = 2)
print date
print security_id
market = ft(security_id = security_id, date = datetime.strftime(date, "%d/%m/%Y"))
print market
market = market[np.logical_and(market.index >= start, market.index <= end)]
market_dark = market
market = market[market["dark"] == 0]
market = market[market["cross"] == 0]
print market
示例13: export_symdata
# 需要导入模块: from lib.dbtools.connections import Connections [as 别名]
# 或者: from lib.dbtools.connections.Connections import exec_sql [as 别名]
def export_symdata(data_security_referential = None,
path_export = None, filename_export = None,
indicators2export = [1, 2, 3, 21, 22, 24, 25, 27, 29, 31, 33, 35, 37, 38, 39, 40 , 73, 75 , 86]):
#--------------------
#- TEST INPUT
#--------------------
if data_security_referential is None or path_export is None or filename_export is None or indicators2export is None:
raise ValueError('bad inputs')
if not os.path.exists(path_export):
raise ValueError('path not defined')
if data_security_referential.shape[0]==0:
raise ValueError('no security ref')
logging.info('START export_symdata')
#--------------------
#- NEEDED DATA
#--------------------
all_sec_ids = np.unique(data_security_referential['cheuvreux_secid'].values)
str_indicators2export = "".join([str(x)+',' for x in indicators2export])[:-1]
map_flid_indid = mappingflid()
if np.any([x not in map_flid_indid['indicator_id'].values for x in indicators2export]):
raise ValueError('one of the asked indictor do not have yet a flid')
#--------------------
#- ADD DATA (by chunks of securities in order to avoid memory leaks)
#--------------------
with_data_symbol = []
out = open( os.path.join(path_export, filename_export), 'w' )
NB_MIN_SYMBOL = 5000
NB_MAX_SEC = 2000
last_idx = -1
NONE_ = -999
while last_idx < len(all_sec_ids)-1:
# logging.info('pct adv'+str(last_idx/(len(all_sec_ids))))
#--------------------
#- get indicators from database
#--------------------
s_idx = np.min([ last_idx+1, len(all_sec_ids)-1 ])
last_idx = np.min([ last_idx+NB_MAX_SEC, len(all_sec_ids)-1 ])
str_secids = "".join([str(x)+',' for x in all_sec_ids[range( s_idx, last_idx+1 )]])[:-1]
query_indicatops=" SELECT si.security_id,isnull(si.trading_destination_id, %d) as trading_destination_id,si.indicator_id,si.indicator_value " \
" FROM MARKET_DATA..ci_security_indicator si " \
" LEFT JOIN KGR..EXCHANGEREFCOMPL erefcompl on ( " \
" si.trading_destination_id=erefcompl.EXCHANGE " \
" ) " \
" WHERE si.security_id in (%s) " \
" AND si.indicator_id in (%s) " \
" AND ( erefcompl.EXCHANGETYPE is NULL or erefcompl.EXCHANGETYPE = 'M' ) " \
" ORDER BY si.security_id, trading_destination_id, si.indicator_id " % (NONE_,str_secids,str_indicators2export)
vals=Connections.exec_sql('MARKET_DATA',query_indicatops,schema = True)
if not vals[0]:
continue
vals = pd.DataFrame.from_records(vals[0],columns=vals[1])
uni_ = mutils.uniqueext(vals[['security_id','trading_destination_id']].values, rows = True)
#--------------------
#- add to symdata
#--------------------
for i in range(0, len(uni_)):
#--- for each couple (sec_id, td_id)
tmp_data = vals[(vals['security_id'] == uni_[i][0]) & (vals['trading_destination_id'] == uni_[i][1])]
#--- for each flex symbol
this_sec_info = data_security_referential[ data_security_referential['cheuvreux_secid'] == uni_[i][0]]
for isec in range(0, this_sec_info.shape[0]):
#-- get flex symbol
symbol = this_sec_info['ticker'].values[isec]
if uni_[i][1] == NONE_:
symbol = this_sec_info['tickerAG'].values[isec]
if symbol is None or not isinstance(symbol,basestring):
continue
#-- write str
add_str = ''
for idata in range(0,tmp_data.shape[0]):
#--- for each indicators
flidid = map_flid_indid[map_flid_indid['indicator_id'] == int(tmp_data.iloc[idata]['indicator_id'])]['flid'].values[0]
add_str += str(symbol) + ':' + str(flidid) + '=' + str(tmp_data.iloc[idata]['indicator_value']) + '\n'
add_str += '\n'
out.write(add_str)
with_data_symbol.append(symbol)
#.........这里部分代码省略.........
示例14: on
# 需要导入模块: from lib.dbtools.connections import Connections [as 别名]
# 或者: from lib.dbtools.connections.Connections import exec_sql [as 别名]
myfile.close()
################################
## Place Table
################################
Connections.change_connections('production')
pref_ = "LUIDBC01_" if Connections.connections == "dev" else ""
req=("SELECT flexexch.SUFFIX,exch.EXCHGNAME "
" FROM %sKGR..FlextradeExchangeMapping flexexch "
" LEFT JOIN %sKGR..EXCHANGEMAPPING exchmap on ( "
" flexexch.EXCHANGE=exchmap.EXCHANGE ) "
" LEFT JOIN %sKGR..EXCHANGE exch on ( "
" exchmap.EXCHGID=exch.EXCHGID ) ") % (pref_,pref_,pref_)
vals=Connections.exec_sql('KGR',req)
data=pd.DataFrame.from_records(vals,columns=['suffix','name'])
data=pd.DataFrame(matlabutils.uniqueext(data.values,rows=True),columns=['suffix','name'])
myfile = open(path_export+'place_table_'+datetime.strftime(datetime.today(),'%Y%m%d')+'.txt','w')
myfile.write(' <user-defined name="Place Name (active)" numeric="no">\n')
myfile.write(' <mapping property="TAG_100 (active)">\n')
for i in range(0,data.shape[0]):
if not data.ix[i]['suffix']=='AG':
myfile.write(' <rule predicate="EQUALS" source="'+data.ix[i]['suffix']+'" constant="'+data.ix[i]['name']+'" />\n')
myfile.write(' </mapping>\n')
myfile.write(' </user-defined>\n')
myfile.close()
示例15: GETDATE
# 需要导入模块: from lib.dbtools.connections import Connections [as 别名]
# 或者: from lib.dbtools.connections.Connections import exec_sql [as 别名]
collection.insert(doc)
"""
Connections.change_connections("production")
# first we add the lit primary markets
query = """select exc.MARKET, exc.COUNTRY, exc.EXCHGID, exc.CDBEXCHGID, ref.MIC, ref.GLOBALZONEID, ref.TIMEZONE, ref.PLATFORM, ref.EXCHANGETYPE, tz.OFFSET from KGR..EXCHANGE exc, KGR..EXCHANGEREFCOMPL ref, KGR..TIMEZONE tz
where
ref.EXCHANGE = exc.MARKET and
ref.TIMEZONE = tz.TIMEZONE and
ref.GLOBALZONEID = 1 and
ref.EXCHANGETYPE = 'M' and
GETDATE() < tz.ENDDATE and
GETDATE() >= tz.BEGINDATE
"""
entries = Connections.exec_sql("KGR", query, as_dict = True)
trading_venue_id = 1
for e in entries:
documents.append({"trading_venue_id": trading_venue_id,
"exchange_id": e['MARKET'],
"exchange": e['EXCHGID'] ,
'name' : e["PLATFORM"],
'type': "L",
'is_primary': 1,
'code': e["MIC"],
'destination':"TEST",
"feed": flex_code[int(e["MARKET"])] if flex_code.has_key(int(e["MARKET"])) else "",
"flex_code": flex_code[int(e["MARKET"])] if flex_code.has_key(int(e["MARKET"])) else "",
'ranking': 5,