当前位置: 首页>>代码示例>>Python>>正文


Python Dense.trainable方法代码示例

本文整理汇总了Python中keras.layers.Dense.trainable方法的典型用法代码示例。如果您正苦于以下问题:Python Dense.trainable方法的具体用法?Python Dense.trainable怎么用?Python Dense.trainable使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.layers.Dense的用法示例。


在下文中一共展示了Dense.trainable方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_layer_trainability_switch

# 需要导入模块: from keras.layers import Dense [as 别名]
# 或者: from keras.layers.Dense import trainable [as 别名]
def test_layer_trainability_switch():
    # with constructor argument, in Sequential
    model = Sequential()
    model.add(Dense(2, trainable=False, input_dim=1))
    assert model.trainable_weights == []

    # by setting the `trainable` argument, in Sequential
    model = Sequential()
    layer = Dense(2, input_dim=1)
    model.add(layer)
    assert model.trainable_weights == layer.trainable_weights
    layer.trainable = False
    assert model.trainable_weights == []

    # with constructor argument, in Model
    x = Input(shape=(1,))
    y = Dense(2, trainable=False)(x)
    model = Model(x, y)
    assert model.trainable_weights == []

    # by setting the `trainable` argument, in Model
    x = Input(shape=(1,))
    layer = Dense(2)
    y = layer(x)
    model = Model(x, y)
    assert model.trainable_weights == layer.trainable_weights
    layer.trainable = False
    assert model.trainable_weights == []
开发者ID:BlakePrice,项目名称:keras,代码行数:30,代码来源:test_dynamic_trainability.py

示例2: Input

# 需要导入模块: from keras.layers import Dense [as 别名]
# 或者: from keras.layers.Dense import trainable [as 别名]
recog_right=recog
recog_right.add(Dense(64,input_shape=(64,),activation='relu'))
recog_right.add(Lambda(lambda x: x + K.exp(x / 2) * K.random_normal(shape=(1, 64), mean=0.,
                              std=epsilon_std), output_shape=(64,)))
recog_right.add(Highway())
recog_right.add(Activation('sigmoid'))

recog1=Sequential()
recog1.add(Merge([recog_left,recog_right],mode = 'ave'))
recog1.add(Dense(784))

#### HERE***
recog11=Sequential()
layer=Dense(64,init='glorot_uniform',input_shape=(784,))
layer.trainable=False
recog11.add(layer)
layer2=Dense(784, activation='sigmoid',init='glorot_uniform')
layer2.trainable=False
recog11.add(layer2)
recog11.layers[0].W.set_value(np.ones((784,64)).astype(np.float32))

recog11.compile(loss='mean_squared_error', optimizer=sgd,metrics = ['mae'])

recog11.get_weights()[0].shape

gan_input = Input(batch_shape=(1,784))

gan_level2 = recog11(recog1(gan_input))

GAN = Model(gan_input, gan_level2)
开发者ID:kcavagnolo,项目名称:ml_fun,代码行数:32,代码来源:keras_freeze_layer_weights.py

示例3: pop_layer

# 需要导入模块: from keras.layers import Dense [as 别名]
# 或者: from keras.layers.Dense import trainable [as 别名]
model.add(Dense(10,trainable='False'))
model.add(Activation('softmax',trainable='False'))

# LOADING WEIGHTS TO FINE-TUNNE THEM
model.load_weights(weights_path)

pop_layer(model)
pop_layer(model)

# for layer in model.layers:
#   layer.trainable= False

nb_classes=13

layer_last=Dense(nb_classes)
layer_last.trainable=True

layer_last2=Activation('softmax')
layer_last2.trainable=True

model.add(layer_last)
model.add(layer_last2)

print(model.summary())


# let's train the model using SGD + momentum (how original).
#sgd = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
              optimizer="sgd",
              metrics=['accuracy'])
开发者ID:telecombcn-dl,项目名称:dlcv04,代码行数:33,代码来源:cifar10_cnn_finetunning.py

示例4: Input

# 需要导入模块: from keras.layers import Dense [as 别名]
# 或者: from keras.layers.Dense import trainable [as 别名]
recog_right=recog
recog_right.add(Dense(64,input_shape=(64,),activation='relu'))
recog_right.add(Lambda(lambda x: x + K.exp(x / 2) * K.random_normal(shape=(1, 64), mean=0.,
                              std=epsilon_std), output_shape=(64,)))
recog_right.add(Highway())
recog_right.add(Activation('sigmoid'))

recog1=Sequential()
recog1.add(Merge([recog_left,recog_right],mode = 'ave'))
recog1.add(Dense(784))
recog1.add(Activation('relu'))

#### GATE***
recog11=Sequential()
layer=Dense(2,init='glorot_uniform',input_shape=(784,))
layer.trainable=False
recog11.add(layer)
layer2=Dense(784, activation='sigmoid',init='glorot_uniform')
layer2.trainable=True
recog11.add(layer2)
recog11.layers[0].W.set_value(np.ones((784,2)).astype(np.float32))

recog11.compile(loss='mean_squared_error', optimizer=sgd,metrics = ['mae'])

recog11.get_weights()[0].shape

gan_input = Input(batch_shape=(1,784))

gan_level2 = recog11(recog1(gan_input))

GAN = Model(gan_input, gan_level2)
开发者ID:kcavagnolo,项目名称:ml_fun,代码行数:33,代码来源:autoencoder_dimensionality.py


注:本文中的keras.layers.Dense.trainable方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。