本文整理汇总了Python中kafka.client_async.KafkaClient.ready方法的典型用法代码示例。如果您正苦于以下问题:Python KafkaClient.ready方法的具体用法?Python KafkaClient.ready怎么用?Python KafkaClient.ready使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类kafka.client_async.KafkaClient
的用法示例。
在下文中一共展示了KafkaClient.ready方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: OffsetsFetcherAsync
# 需要导入模块: from kafka.client_async import KafkaClient [as 别名]
# 或者: from kafka.client_async.KafkaClient import ready [as 别名]
class OffsetsFetcherAsync(object):
DEFAULT_CONFIG = {
'session_timeout_ms': 30000,
'heartbeat_interval_ms': 3000,
'retry_backoff_ms': 100,
'api_version': (0, 9),
'metric_group_prefix': ''
}
def __init__(self, **configs):
self.config = copy.copy(self.DEFAULT_CONFIG)
self.config.update(configs)
self._client = KafkaClient(**self.config)
self._coordinator_id = None
self.group_id = configs['group_id']
self.topic = configs['topic']
def _ensure_coordinator_known(self):
"""Block until the coordinator for this group is known
(and we have an active connection -- java client uses unsent queue).
"""
while self._coordinator_unknown():
# Prior to 0.8.2 there was no group coordinator
# so we will just pick a node at random and treat
# it as the "coordinator"
if self.config['api_version'] < (0, 8, 2):
self._coordinator_id = self._client.least_loaded_node()
self._client.ready(self._coordinator_id)
continue
future = self._send_group_coordinator_request()
self._client.poll(future=future)
if future.failed():
if isinstance(future.exception,
Errors.GroupCoordinatorNotAvailableError):
continue
elif future.retriable():
metadata_update = self._client.cluster.request_update()
self._client.poll(future=metadata_update)
else:
raise future.exception # pylint: disable-msg=raising-bad-type
def _coordinator_unknown(self):
"""Check if we know who the coordinator is and have an active connection
Side-effect: reset _coordinator_id to None if connection failed
Returns:
bool: True if the coordinator is unknown
"""
if self._coordinator_id is None:
return True
if self._client.is_disconnected(self._coordinator_id):
self._coordinator_dead()
return True
return False
def _coordinator_dead(self, error=None):
"""Mark the current coordinator as dead."""
if self._coordinator_id is not None:
log.warning("Marking the coordinator dead (node %s) for group %s: %s.",
self._coordinator_id, self.group_id, error)
self._coordinator_id = None
def _send_group_coordinator_request(self):
"""Discover the current coordinator for the group.
Returns:
Future: resolves to the node id of the coordinator
"""
node_id = self._client.least_loaded_node()
if node_id is None:
return Future().failure(Errors.NoBrokersAvailable())
log.debug("Sending group coordinator request for group %s to broker %s",
self.group_id, node_id)
request = GroupCoordinatorRequest[0](self.group_id)
future = Future()
_f = self._client.send(node_id, request)
_f.add_callback(self._handle_group_coordinator_response, future)
_f.add_errback(self._failed_request, node_id, request, future)
return future
def _handle_group_coordinator_response(self, future, response):
log.debug("Received group coordinator response %s", response)
if not self._coordinator_unknown():
# We already found the coordinator, so ignore the request
log.debug("Coordinator already known -- ignoring metadata response")
future.success(self._coordinator_id)
return
error_type = Errors.for_code(response.error_code)
if error_type is Errors.NoError:
ok = self._client.cluster.add_group_coordinator(self.group_id, response)
if not ok:
#.........这里部分代码省略.........
示例2: __init__
# 需要导入模块: from kafka.client_async import KafkaClient [as 别名]
# 或者: from kafka.client_async.KafkaClient import ready [as 别名]
class KafkaConsumerLag:
def __init__(self, bootstrap_servers):
self.client = KafkaClient(bootstrap_servers=bootstrap_servers)
self.client.check_version()
def _send(self, broker_id, request, response_type=None):
f = self.client.send(broker_id, request)
response = self.client.poll(future=f)
if response_type:
if response and len(response) > 0:
for r in response:
if isinstance(r, response_type):
return r
else:
if response and len(response) > 0:
return response[0]
return None
def check(self, group_topics=None, discovery=None):
"""
{
"<group>": {
"state": <str>,
"topics": {
"<topic>": {
"consumer_lag": <int>,
"partitions": {
"<partition>": {
"offset_first": <int>,
"offset_consumed": <int>,
"offset_last": <int>,
"lag": <int>
}
}
}
}
}
}
:param persist_groups:
:return: consumer statistics
"""
cluster = self.client.cluster
brokers = cluster.brokers()
# Consumer group ID -> list(topics)
if group_topics is None:
group_topics = {}
if discovery is None:
discovery = True
else:
group_topics = copy.deepcopy(group_topics)
# Set of consumer group IDs
consumer_groups = set(group_topics.iterkeys())
# Set of all known topics
topics = set(itertools.chain(*group_topics.itervalues()))
# Consumer group ID -> coordinating broker
consumer_coordinator = {}
# Coordinating broker - > list(consumer group IDs)
coordinator_consumers = {}
results = {}
for consumer_group in group_topics.iterkeys():
results[consumer_group] = {'state': None, 'topics': {}}
# Ensure connections to all brokers
for broker in brokers:
while not self.client.is_ready(broker.nodeId):
self.client.ready(broker.nodeId)
# Collect all active consumer groups
if discovery:
for broker in brokers:
response = self._send(broker.nodeId, _ListGroupsRequest(), _ListGroupsResponse)
if response:
for group in response.groups:
consumer_groups.add(group[0])
# Identify which broker is coordinating each consumer group
for group in consumer_groups:
response = self._send(next(iter(brokers)).nodeId, _GroupCoordinatorRequest(group), _GroupCoordinatorResponse)
if response:
consumer_coordinator[group] = response.coordinator_id
if response.coordinator_id not in coordinator_consumers:
coordinator_consumers[response.coordinator_id] = []
#.........这里部分代码省略.........
示例3: test_ready
# 需要导入模块: from kafka.client_async import KafkaClient [as 别名]
# 或者: from kafka.client_async.KafkaClient import ready [as 别名]
def test_ready(mocker, conn):
cli = KafkaClient()
maybe_connect = mocker.patch.object(cli, '_maybe_connect')
node_id = 1
cli.ready(node_id)
maybe_connect.assert_called_with(node_id)
示例4: test_ready
# 需要导入模块: from kafka.client_async import KafkaClient [as 别名]
# 或者: from kafka.client_async.KafkaClient import ready [as 别名]
def test_ready(conn):
cli = KafkaClient()
# Node not in metadata
assert not cli.ready(2)
# Node in metadata will connect
assert 0 not in cli._conns
assert cli.ready(0)
assert 0 in cli._conns
assert cli._conns[0].state is ConnectionStates.CONNECTED
# metadata refresh blocks ready nodes
assert cli.ready(0)
assert cli.ready(1)
cli._metadata_refresh_in_progress = True
assert not cli.ready(0)
assert not cli.ready(1)
# requesting metadata update also blocks ready nodes
cli._metadata_refresh_in_progress = False
assert cli.ready(0)
assert cli.ready(1)
cli.cluster.request_update()
cli.cluster.config['retry_backoff_ms'] = 0
assert not cli._metadata_refresh_in_progress
assert not cli.ready(0)
assert not cli.ready(1)
cli.cluster._need_update = False
# if connection can't send more, not ready
assert cli.ready(0)
assert cli.ready(1)
conn.can_send_more.return_value = False
assert not cli.ready(0)
conn.can_send_more.return_value = True
# disconnected nodes, not ready
assert cli.ready(0)
assert cli.ready(1)
conn.connected.return_value = False
assert not cli.ready(0)
conn.connected.return_value = True
# connecting node connects
cli._connecting.add(0)
conn.connected.return_value = False
cli.ready(0)
assert 0 not in cli._connecting
assert cli._conns[0].connect.called_with()
示例5: test_ready
# 需要导入模块: from kafka.client_async import KafkaClient [as 别名]
# 或者: from kafka.client_async.KafkaClient import ready [as 别名]
def test_ready(conn):
cli = KafkaClient()
# Node not in metadata raises Exception
try:
cli.ready(2)
assert False, 'Exception not raised'
except AssertionError:
pass
# Node in metadata will connect
assert 0 not in cli._conns
assert cli.ready(0)
assert 0 in cli._conns
assert cli._conns[0].state is ConnectionStates.CONNECTED
# metadata refresh blocks ready nodes
assert cli.ready(0)
assert cli.ready(1)
cli._metadata_refresh_in_progress = True
assert not cli.ready(0)
assert not cli.ready(1)
# requesting metadata update also blocks ready nodes
cli._metadata_refresh_in_progress = False
assert cli.ready(0)
assert cli.ready(1)
cli.cluster.request_update()
cli.cluster.config['retry_backoff_ms'] = 0
assert not cli._metadata_refresh_in_progress
assert not cli.ready(0)
assert not cli.ready(1)
cli.cluster._need_update = False
# if connection can't send more, not ready
assert cli.ready(0)
assert cli.ready(1)
conn.can_send_more.return_value = False
assert not cli.ready(0)
conn.can_send_more.return_value = True
# disconnected nodes, not ready
assert cli.ready(0)
assert cli.ready(1)
conn.state = ConnectionStates.DISCONNECTED
assert not cli.ready(0)
# connecting node connects
cli._connecting.add(0)
conn.state = ConnectionStates.CONNECTING
conn.connect.side_effect = lambda: ConnectionStates.CONNECTED
cli.ready(0)
assert 0 not in cli._connecting
assert cli._conns[0].connect.called_with()
示例6: KafkaAdminClient
# 需要导入模块: from kafka.client_async import KafkaClient [as 别名]
# 或者: from kafka.client_async.KafkaClient import ready [as 别名]
#.........这里部分代码省略.........
def __init__(self, **configs):
log.debug("Starting KafkaAdminClient with configuration: %s", configs)
extra_configs = set(configs).difference(self.DEFAULT_CONFIG)
if extra_configs:
raise KafkaConfigurationError("Unrecognized configs: {}".format(extra_configs))
self.config = copy.copy(self.DEFAULT_CONFIG)
self.config.update(configs)
# Configure metrics
metrics_tags = {'client-id': self.config['client_id']}
metric_config = MetricConfig(samples=self.config['metrics_num_samples'],
time_window_ms=self.config['metrics_sample_window_ms'],
tags=metrics_tags)
reporters = [reporter() for reporter in self.config['metric_reporters']]
self._metrics = Metrics(metric_config, reporters)
self._client = KafkaClient(metrics=self._metrics,
metric_group_prefix='admin',
**self.config)
# Get auto-discovered version from client if necessary
if self.config['api_version'] is None:
self.config['api_version'] = self._client.config['api_version']
self._closed = False
self._refresh_controller_id()
log.debug("KafkaAdminClient started.")
def close(self):
"""Close the KafkaAdminClient connection to the Kafka broker."""
if not hasattr(self, '_closed') or self._closed:
log.info("KafkaAdminClient already closed.")
return
self._metrics.close()
self._client.close()
self._closed = True
log.debug("KafkaAdminClient is now closed.")
def _matching_api_version(self, operation):
"""Find the latest version of the protocol operation supported by both
this library and the broker.
This resolves to the lesser of either the latest api version this
library supports, or the max version supported by the broker.
:param operation: A list of protocol operation versions from kafka.protocol.
:return: The max matching version number between client and broker.
"""
version = min(len(operation) - 1,
self._client.get_api_versions()[operation[0].API_KEY][1])
if version < self._client.get_api_versions()[operation[0].API_KEY][0]:
# max library version is less than min broker version. Currently,
# no Kafka versions specify a min msg version. Maybe in the future?
raise IncompatibleBrokerVersion(
"No version of the '{}' Kafka protocol is supported by both the client and broker."
.format(operation.__name__))
return version
def _validate_timeout(self, timeout_ms):
"""Validate the timeout is set or use the configuration default.
:param timeout_ms: The timeout provided by api call, in milliseconds.
:return: The timeout to use for the operation.