当前位置: 首页>>代码示例>>Python>>正文


Python CubeList.concatenate_cube方法代码示例

本文整理汇总了Python中iris.cube.CubeList.concatenate_cube方法的典型用法代码示例。如果您正苦于以下问题:Python CubeList.concatenate_cube方法的具体用法?Python CubeList.concatenate_cube怎么用?Python CubeList.concatenate_cube使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在iris.cube.CubeList的用法示例。


在下文中一共展示了CubeList.concatenate_cube方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_data_object

# 需要导入模块: from iris.cube import CubeList [as 别名]
# 或者: from iris.cube.CubeList import concatenate_cube [as 别名]
    def create_data_object(self, filenames, variable, index_offset=1):
        from cis.data_io.hdf_vd import get_data
        from cis.data_io.hdf_vd import VDS
        from pyhdf.error import HDF4Error
        from cis.data_io import hdf_sd
        from iris.coords import DimCoord, AuxCoord
        from iris.cube import Cube, CubeList
        from cis.data_io.gridded_data import GriddedData
        from cis.time_util import cis_standard_time_unit
        from datetime import datetime
        from iris.util import new_axis
        import numpy as np

        logging.debug("Creating data object for variable " + variable)

        variables = ["Pressure_Mean"]
        logging.info("Listing coordinates: " + str(variables))

        variables.append(variable)

        # reading data from files
        sdata = {}
        for filename in filenames:
            try:
                sds_dict = hdf_sd.read(filename, variables)
            except HDF4Error as e:
                raise IOError(str(e))

            for var in list(sds_dict.keys()):
                utils.add_element_to_list_in_dict(sdata, var, sds_dict[var])

        # work out size of data arrays
        # the coordinate variables will be reshaped to match that.
        # NOTE: This assumes that all Caliop_L1 files have the same altitudes.
        #       If this is not the case, then the following line will need to be changed
        #       to concatenate the data from all the files and not just arbitrarily pick
        #       the altitudes from the first file.
        alt_data = self._get_calipso_data(hdf_sd.HDF_SDS(filenames[0], 'Altitude_Midpoint'))[0, :]
        alt_coord = DimCoord(alt_data, standard_name='altitude', units='km')
        alt_coord.convert_units('m')

        lat_data = self._get_calipso_data(hdf_sd.HDF_SDS(filenames[0], 'Latitude_Midpoint'))[0, :]
        lat_coord = DimCoord(lat_data, standard_name='latitude', units='degrees_north')

        lon_data = self._get_calipso_data(hdf_sd.HDF_SDS(filenames[0], 'Longitude_Midpoint'))[0, :]
        lon_coord = DimCoord(lon_data, standard_name='longitude', units='degrees_east')

        cubes = CubeList()
        for f in filenames:
            t = get_data(VDS(f, "Nominal_Year_Month"), True)[0]
            time_data = cis_standard_time_unit.date2num(datetime(int(t[0:4]), int(t[4:6]), 15))
            time_coord = AuxCoord(time_data, long_name='Profile_Time', standard_name='time',
                                  units=cis_standard_time_unit)

            # retrieve data + its metadata
            var = sdata[variable]
            metadata = hdf.read_metadata(var, "SD")

            data = self._get_calipso_data(hdf_sd.HDF_SDS(f, variable))

            pres_data = self._get_calipso_data(hdf_sd.HDF_SDS(f, 'Pressure_Mean'))
            pres_coord = AuxCoord(pres_data, standard_name='air_pressure', units='hPa')

            if data.ndim == 2:
                # pres_coord = new_axis()
                cube = Cube(data, long_name=metadata.long_name or variable, units=self.clean_units(metadata.units),
                            dim_coords_and_dims=[(lat_coord, 0), (lon_coord, 1)],
                            aux_coords_and_dims=[(time_coord, ())])
                # Promote the time scalar coord to a length one dimension
                new_cube = new_axis(cube, 'time')
                cubes.append(new_cube)
            elif data.ndim == 3:
                # pres_coord = new_axis()
                cube = Cube(data, long_name=metadata.long_name or variable, units=self.clean_units(metadata.units),
                            dim_coords_and_dims=[(lat_coord, 0), (lon_coord, 1), (alt_coord, 2)],
                            aux_coords_and_dims=[(time_coord, ())])
                # Promote the time scalar coord to a length one dimension
                new_cube = new_axis(cube, 'time')
                # Then add the (extended) pressure coord so that it is explicitly a function of time
                new_cube.add_aux_coord(pres_coord[np.newaxis, ...], (0, 1, 2, 3))
                cubes.append(new_cube)
            else:
                raise ValueError("Unexpected number of dimensions for CALIOP data: {}".format(data.ndim))


        # Concatenate the cubes from each file into a single GriddedData object
        gd = GriddedData.make_from_cube(cubes.concatenate_cube())
        return gd
开发者ID:duncanwp,项目名称:cis_plugins,代码行数:90,代码来源:caliop_cube.py


注:本文中的iris.cube.CubeList.concatenate_cube方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。