本文整理汇总了Python中iris.analysis.Aggregator.aggregate方法的典型用法代码示例。如果您正苦于以下问题:Python Aggregator.aggregate方法的具体用法?Python Aggregator.aggregate怎么用?Python Aggregator.aggregate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类iris.analysis.Aggregator
的用法示例。
在下文中一共展示了Aggregator.aggregate方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_mdtol_intercept
# 需要导入模块: from iris.analysis import Aggregator [as 别名]
# 或者: from iris.analysis.Aggregator import aggregate [as 别名]
def test_mdtol_intercept(self):
call_func = Mock()
data = sentinel.data
axis = sentinel.axis
aggregator = Aggregator('', call_func)
aggregator.aggregate(data, axis, wibble='wobble', mdtol=0.8)
call_func.assert_called_once_with(data, axis=axis, wibble='wobble')
示例2: test_kwarg_pass_through_no_kwargs
# 需要导入模块: from iris.analysis import Aggregator [as 别名]
# 或者: from iris.analysis.Aggregator import aggregate [as 别名]
def test_kwarg_pass_through_no_kwargs(self):
call_func = Mock()
data = sentinel.data
axis = sentinel.axis
aggregator = Aggregator('', call_func)
aggregator.aggregate(data, axis)
call_func.assert_called_once_with(data, axis=axis)
示例3: test_kwarg_pass_through_init_kwargs
# 需要导入模块: from iris.analysis import Aggregator [as 别名]
# 或者: from iris.analysis.Aggregator import aggregate [as 别名]
def test_kwarg_pass_through_init_kwargs(self):
call_func = Mock()
data = sentinel.data
axis = sentinel.axis
kwargs = dict(wibble='wobble', foo='bar')
aggregator = Aggregator('', call_func, **kwargs)
aggregator.aggregate(data, axis)
call_func.assert_called_once_with(data, axis=axis, **kwargs)
示例4: test_kwarg_pass_through_combined_kwargs
# 需要导入模块: from iris.analysis import Aggregator [as 别名]
# 或者: from iris.analysis.Aggregator import aggregate [as 别名]
def test_kwarg_pass_through_combined_kwargs(self):
call_func = Mock()
data = sentinel.data
axis = sentinel.axis
init_kwargs = dict(wibble='wobble', var=1.0)
call_kwargs = dict(foo='foo', var=0.5)
aggregator = Aggregator('', call_func, **init_kwargs)
aggregator.aggregate(data, axis, **call_kwargs)
expected_kwargs = init_kwargs.copy()
expected_kwargs.update(call_kwargs)
call_func.assert_called_once_with(data, axis=axis, **expected_kwargs)
示例5: Test_aggregate
# 需要导入模块: from iris.analysis import Aggregator [as 别名]
# 或者: from iris.analysis.Aggregator import aggregate [as 别名]
class Test_aggregate(tests.IrisTest):
# These unit tests don't call a data aggregation function, they call a
# mocked one i.e. the return values of the mocked data aggregation
# function don't matter, only how these are dealt with by the aggregate
# method.
def setUp(self):
self.TEST = Aggregator('test', None)
self.array = ma.array([[1, 2, 3],
[4, 5, 6]],
mask=[[False, True, False],
[True, False, False]],
dtype=np.float64)
self.expected_result_axis0 = ma.array([1, 2, 3], mask=None)
self.expected_result_axis1 = ma.array([4, 5], mask=None)
def test_masked_notol(self):
# Providing masked array with no tolerance keyword (mdtol) provided.
axis = 0
mock_return = self.expected_result_axis0.copy()
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(self.array, axis)
self.assertMaskedArrayEqual(result, self.expected_result_axis0)
mock_method.assert_called_once_with(self.array, axis=axis)
axis = 1
mock_return = self.expected_result_axis1.copy()
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(self.array, axis)
self.assertMaskedArrayEqual(result, self.expected_result_axis1)
mock_method.assert_called_once_with(self.array, axis=axis)
def test_masked_above_tol(self):
# Providing masked array with a high tolerance (mdtol) provided.
axis = 0
mock_return = self.expected_result_axis0.copy()
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(self.array, axis, mdtol=.55)
self.assertMaskedArrayEqual(result, self.expected_result_axis0)
mock_method.assert_called_once_with(self.array, axis=axis)
axis = 1
mock_return = self.expected_result_axis1.copy()
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(self.array, axis, mdtol=.55)
self.assertMaskedArrayEqual(result, self.expected_result_axis1)
mock_method.assert_called_once_with(self.array, axis=axis)
def test_masked_below_tol(self):
# Providing masked array with a tolerance on missing values, low
# enough to modify the resulting mask for axis 0.
axis = 0
result_axis_0 = self.expected_result_axis0.copy()
result_axis_0.mask = np.array([True, True, False])
mock_return = ma.array([1, 2, 3], mask=None)
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(self.array, axis, mdtol=.45)
self.assertMaskedArrayAlmostEqual(result, result_axis_0)
mock_method.assert_called_once_with(self.array, axis=axis)
axis = 1
mock_return = self.expected_result_axis1.copy()
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(self.array, axis, mdtol=.45)
self.assertMaskedArrayEqual(result, self.expected_result_axis1)
mock_method.assert_called_once_with(self.array, axis=axis)
def test_masked_below_tol_alt(self):
# Providing masked array with a tolerance on missing values, low
# enough to modify the resulting mask for axis 1.
axis = 1
result_axis_1 = self.expected_result_axis1.copy()
result_axis_1.mask = np.array([True, True])
mock_return = self.expected_result_axis1.copy()
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(self.array, axis, mdtol=.1)
self.assertMaskedArrayAlmostEqual(result, result_axis_1)
mock_method.assert_called_once_with(self.array, axis=axis)
def test_unmasked_with_mdtol(self):
# Providing aggregator with an unmasked array and tolerance specified
# for missing data - ensure that result is unaffected.
data = self.array.data
axis = 0
mock_return = self.expected_result_axis0.data.copy()
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(data, axis, mdtol=0.5)
self.assertArrayAlmostEqual(result, mock_return.copy())
mock_method.assert_called_once_with(data, axis=axis)
axis = 1
mock_return = self.expected_result_axis1.data.copy()
#.........这里部分代码省略.........
示例6: Test_aggregate
# 需要导入模块: from iris.analysis import Aggregator [as 别名]
# 或者: from iris.analysis.Aggregator import aggregate [as 别名]
class Test_aggregate(tests.IrisTest):
# These unit tests don't call a data aggregation function, they call a
# mocked one i.e. the return values of the mocked data aggregation
# function don't matter, only how these are dealt with by the aggregate
# method.
def setUp(self):
self.TEST = Aggregator('test', None)
self.array = ma.array([[1, 2, 3],
[4, 5, 6]],
mask=[[False, True, False],
[True, False, False]],
dtype=np.float64)
self.expected_result_axis0 = ma.array([1, 2, 3], mask=None)
self.expected_result_axis1 = ma.array([4, 5], mask=None)
def test_masked_notol(self):
# Providing masked array with no tolerance keyword (mdtol) provided.
axis = 0
mock_return = self.expected_result_axis0.copy()
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(self.array, axis)
self.assertMaskedArrayEqual(result, self.expected_result_axis0)
mock_method.assert_called_once_with(self.array, axis=axis)
axis = 1
mock_return = self.expected_result_axis1.copy()
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(self.array, axis)
self.assertMaskedArrayEqual(result, self.expected_result_axis1)
mock_method.assert_called_once_with(self.array, axis=axis)
def test_masked_above_tol(self):
# Providing masked array with a high tolerance (mdtol) provided.
axis = 0
mock_return = self.expected_result_axis0.copy()
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(self.array, axis, mdtol=.55)
self.assertMaskedArrayEqual(result, self.expected_result_axis0)
mock_method.assert_called_once_with(self.array, axis=axis)
axis = 1
mock_return = self.expected_result_axis1.copy()
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(self.array, axis, mdtol=.55)
self.assertMaskedArrayEqual(result, self.expected_result_axis1)
mock_method.assert_called_once_with(self.array, axis=axis)
def test_masked_below_tol(self):
# Providing masked array with a tolerance on missing values, low
# enough to modify the resulting mask for axis 0.
axis = 0
result_axis_0 = self.expected_result_axis0.copy()
result_axis_0.mask = np.array([True, True, False])
mock_return = ma.array([1, 2, 3], mask=None)
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(self.array, axis, mdtol=.45)
self.assertMaskedArrayAlmostEqual(result, result_axis_0)
mock_method.assert_called_once_with(self.array, axis=axis)
axis = 1
mock_return = self.expected_result_axis1.copy()
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(self.array, axis, mdtol=.45)
self.assertMaskedArrayEqual(result, self.expected_result_axis1)
mock_method.assert_called_once_with(self.array, axis=axis)
def test_masked_below_tol_alt(self):
# Providing masked array with a tolerance on missing values, low
# enough to modify the resulting mask for axis 1.
axis = 1
result_axis_1 = self.expected_result_axis1.copy()
result_axis_1.mask = np.array([True, True])
mock_return = self.expected_result_axis1.copy()
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(self.array, axis, mdtol=.1)
self.assertMaskedArrayAlmostEqual(result, result_axis_1)
mock_method.assert_called_once_with(self.array, axis=axis)
def test_unmasked_with_mdtol(self):
# Providing aggregator with an unmasked array and tolerance specified
# for missing data - ensure that result is unaffected.
data = self.array.data
axis = 0
mock_return = self.expected_result_axis0.data.copy()
with patch.object(self.TEST, 'call_func',
return_value=mock_return) as mock_method:
result = self.TEST.aggregate(data, axis, mdtol=0.5)
self.assertArrayAlmostEqual(result, mock_return.copy())
mock_method.assert_called_once_with(data, axis=axis)
axis = 1
mock_return = self.expected_result_axis1.data.copy()
#.........这里部分代码省略.........