当前位置: 首页>>代码示例>>Python>>正文


Python DataRetrieverServiceClient.define_replay方法代码示例

本文整理汇总了Python中interface.services.dm.idata_retriever_service.DataRetrieverServiceClient.define_replay方法的典型用法代码示例。如果您正苦于以下问题:Python DataRetrieverServiceClient.define_replay方法的具体用法?Python DataRetrieverServiceClient.define_replay怎么用?Python DataRetrieverServiceClient.define_replay使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在interface.services.dm.idata_retriever_service.DataRetrieverServiceClient的用法示例。


在下文中一共展示了DataRetrieverServiceClient.define_replay方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: DataRetrieverIntTestAlpha

# 需要导入模块: from interface.services.dm.idata_retriever_service import DataRetrieverServiceClient [as 别名]
# 或者: from interface.services.dm.idata_retriever_service.DataRetrieverServiceClient import define_replay [as 别名]
class DataRetrieverIntTestAlpha(IonIntegrationTestCase):
    def setUp(self):
        super(DataRetrieverIntTestAlpha,self).setUp()


        self._start_container()
        config = DotDict()
        config.bootstrap.processes.ingestion.module = 'ion.processes.data.ingestion.ingestion_worker_a'
        config.bootstrap.processes.replay.module    = 'ion.processes.data.replay.replay_process_a'
        self.container.start_rel_from_url('res/deploy/r2dm.yml', config)


        self.datastore_name = 'test_datasets'
        self.datastore      = self.container.datastore_manager.get_datastore(self.datastore_name, profile=DataStore.DS_PROFILE.SCIDATA)

        self.data_retriever     = DataRetrieverServiceClient()
        self.dataset_management = DatasetManagementServiceClient()
        self.resource_registry  = ResourceRegistryServiceClient()

        xs_dot_xp = CFG.core_xps.science_data

        try:
            self.XS, xp_base = xs_dot_xp.split('.')
            self.XP = '.'.join([get_sys_name(), xp_base])
        except ValueError:
            raise StandardError('Invalid CFG for core_xps.science_data: "%s"; must have "xs.xp" structure' % xs_dot_xp)
    @attr('LOCOINT')
    @unittest.skipIf(os.getenv('CEI_LAUNCH_TEST', False), 'Skip test while in CEI LAUNCH mode')
    def test_define_replay(self):
        # Create a dataset to work with
        dataset_id = self.dataset_management.create_dataset('fakestream', self.datastore_name)

        replay_id, stream_id = self.data_retriever.define_replay(dataset_id=dataset_id)

        # Verify that the replay instance was created
        replay = self.resource_registry.read(replay_id)

        pid = replay.process_id

        process = self.container.proc_manager.procs[pid]

        self.assertIsInstance(process,ReplayProcess, 'Incorrect process launched')
开发者ID:ooici-eoi,项目名称:coi-services,代码行数:44,代码来源:data_retriever_test_a.py

示例2: test_usgs_integration

# 需要导入模块: from interface.services.dm.idata_retriever_service import DataRetrieverServiceClient [as 别名]
# 或者: from interface.services.dm.idata_retriever_service.DataRetrieverServiceClient import define_replay [as 别名]

#.........这里部分代码省略.........

        #---------------------------
        # Set up the producers (CTD Simulators)
        #---------------------------
        # Launch five simulated CTD producers
        for iteration in xrange(2):
            # Make a stream to output on

            stream_id = pubsub_management_service.create_stream(stream_definition_id=stream_def_id)

            #---------------------------
            # Set up the datasets
            #---------------------------
            dataset_id = dataset_management_service.create_dataset(
                stream_id=stream_id,
                datastore_name=datastore_name,
                view_name='datasets/stream_join_granule'
            )
            # Keep track of the datasets
            datasets.append(dataset_id)

            stream_policy_id = ingestion_management_service.create_dataset_configuration(
                dataset_id = dataset_id,
                archive_data = True,
                archive_metadata = True,
                ingestion_configuration_id = ingestion_configuration_id
            )


            producer_definition = ProcessDefinition()
            producer_definition.executable = {
                'module':'ion.agents.eoi.handler.usgs_stream_publisher',
                'class':'UsgsPublisher'
            }
            configuration = {
                'process':{
                    'stream_id':stream_id,
                    }
            }
            procdef_id = process_dispatcher.create_process_definition(process_definition=producer_definition)
            log.debug('LUKE_DEBUG: procdef_id: %s', procdef_id)
            pid = process_dispatcher.schedule_process(process_definition_id=procdef_id, configuration=configuration)


            # Keep track, we'll kill 'em later.
            process_list.append(pid)
            # Get about 4 seconds of data
        time.sleep(4)

        #---------------------------
        # Stop producing data
        #---------------------------

        for process in process_list:
            process_dispatcher.cancel_process(process)

        #----------------------------------------------
        # The replay and the transform, a love story.
        #----------------------------------------------
        # Happy Valentines to the clever coder who catches the above!

        transform_definition = ProcessDefinition()
        transform_definition.executable = {
            'module':'ion.processes.data.transforms.transform_example',
            'class':'TransformCapture'
        }
        transform_definition_id = process_dispatcher.create_process_definition(process_definition=transform_definition)

        dataset_id = datasets.pop() # Just need one for now
        replay_id, stream_id = data_retriever_service.define_replay(dataset_id=dataset_id)

        #--------------------------------------------
        # I'm Selling magazine subscriptions here!
        #--------------------------------------------

        subscription = pubsub_management_service.create_subscription(query=StreamQuery(stream_ids=[stream_id]),
            exchange_name='transform_capture_point')

        #--------------------------------------------
        # Start the transform (capture)
        #--------------------------------------------
        transform_id = transform_management_service.create_transform(
            name='capture_transform',
            in_subscription_id=subscription,
            process_definition_id=transform_definition_id
        )

        transform_management_service.activate_transform(transform_id=transform_id)

        #--------------------------------------------
        # BEGIN REPLAY!
        #--------------------------------------------

        data_retriever_service.start_replay(replay_id=replay_id)

        #--------------------------------------------
        # Lets get some boundaries
        #--------------------------------------------

        bounds = dataset_management_service.get_dataset_bounds(dataset_id=dataset_id)
开发者ID:seman,项目名称:coi-services,代码行数:104,代码来源:test_usgs_integration.py

示例3: TestDMEnd2End

# 需要导入模块: from interface.services.dm.idata_retriever_service import DataRetrieverServiceClient [as 别名]
# 或者: from interface.services.dm.idata_retriever_service.DataRetrieverServiceClient import define_replay [as 别名]

#.........这里部分代码省略.........
        # - Get the ingestion configuration from the resource registry
        # - Create the dataset
        # - call persist_data_stream to setup the subscription for the ingestion workers
        #   on the stream that you specify which causes the data to be persisted
        #--------------------------------------------------------------------------------

        ingest_config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=ingest_config_id, dataset_id=dataset_id)
        self.addCleanup(self.stop_ingestion, stream_id)

        #--------------------------------------------------------------------------------
        # Now the granules are ingesting and persisted
        #--------------------------------------------------------------------------------

        self.launch_producer(stream_id)
        self.wait_until_we_have_enough_granules(dataset_id,40)
        
        #--------------------------------------------------------------------------------
        # Now get the data in one chunk using an RPC Call to start_retreive
        #--------------------------------------------------------------------------------
        
        replay_data = self.data_retriever.retrieve(dataset_id)
        self.assertIsInstance(replay_data, Granule)
        rdt = RecordDictionaryTool.load_from_granule(replay_data)
        self.assertTrue((rdt['time'][:10] == np.arange(10)).all(),'%s' % rdt['time'][:])
        self.assertTrue((rdt['binary'][:10] == np.array(['hi']*10, dtype='object')).all())

        
        #--------------------------------------------------------------------------------
        # Now to try the streamed approach
        #--------------------------------------------------------------------------------
        replay_stream_id, replay_route = self.pubsub_management.create_stream('replay_out', exchange_point=self.exchange_point_name, stream_definition_id=stream_definition)
        self.replay_id, process_id =  self.data_retriever.define_replay(dataset_id=dataset_id, stream_id=replay_stream_id)
        log.info('Process ID: %s', process_id)

        replay_client = ReplayClient(process_id)

    
        #--------------------------------------------------------------------------------
        # Create the listening endpoint for the the retriever to talk to 
        #--------------------------------------------------------------------------------
        sub_id = self.pubsub_management.create_subscription(self.exchange_space_name,stream_ids=[replay_stream_id])
        self.addCleanup(self.pubsub_management.delete_subscription, sub_id)
        self.pubsub_management.activate_subscription(sub_id)
        self.addCleanup(self.pubsub_management.deactivate_subscription, sub_id)
        subscriber = StandaloneStreamSubscriber(self.exchange_space_name, self.validate_granule_subscription)
        subscriber.start()
        self.addCleanup(subscriber.stop)

        self.data_retriever.start_replay_agent(self.replay_id)

        self.assertTrue(replay_client.await_agent_ready(5), 'The process never launched')
        replay_client.start_replay()
        
        self.assertTrue(self.event.wait(10))

        self.data_retriever.cancel_replay_agent(self.replay_id)


        #--------------------------------------------------------------------------------
        # Test the slicing capabilities
        #--------------------------------------------------------------------------------

        granule = self.data_retriever.retrieve(dataset_id=dataset_id, query={'tdoa':slice(0,5)})
        rdt = RecordDictionaryTool.load_from_granule(granule)
开发者ID:ednad,项目名称:coi-services,代码行数:70,代码来源:test_dm_end_2_end.py

示例4: TestDMEnd2End

# 需要导入模块: from interface.services.dm.idata_retriever_service import DataRetrieverServiceClient [as 别名]
# 或者: from interface.services.dm.idata_retriever_service.DataRetrieverServiceClient import define_replay [as 别名]

#.........这里部分代码省略.........
        # Start persisting the data on the stream 
        # - Get the ingestion configuration from the resource registry
        # - Create the dataset
        # - call persist_data_stream to setup the subscription for the ingestion workers
        #   on the stream that you specify which causes the data to be persisted
        #--------------------------------------------------------------------------------

        ingest_config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=ingest_config_id, dataset_id=dataset_id)

        #--------------------------------------------------------------------------------
        # Now the granules are ingesting and persisted
        #--------------------------------------------------------------------------------

        self.launch_producer(stream_id)
        self.wait_until_we_have_enough_granules(dataset_id,40)
        
        #--------------------------------------------------------------------------------
        # Now get the data in one chunk using an RPC Call to start_retreive
        #--------------------------------------------------------------------------------
        
        replay_data = self.data_retriever.retrieve(dataset_id)
        self.assertIsInstance(replay_data, Granule)
        rdt = RecordDictionaryTool.load_from_granule(replay_data)
        self.assertTrue((rdt['time'][:10] == np.arange(10)).all(),'%s' % rdt['time'][:])
        self.assertTrue((rdt['binary'][:10] == np.array(['hi']*10, dtype='object')).all())

        
        #--------------------------------------------------------------------------------
        # Now to try the streamed approach
        #--------------------------------------------------------------------------------
        replay_stream_id, replay_route = self.pubsub_management.create_stream('replay_out', exchange_point=self.exchange_point_name, stream_definition_id=stream_definition)
        self.replay_id, process_id =  self.data_retriever.define_replay(dataset_id=dataset_id, stream_id=replay_stream_id)
        log.info('Process ID: %s', process_id)

        replay_client = ReplayClient(process_id)

    
        #--------------------------------------------------------------------------------
        # Create the listening endpoint for the the retriever to talk to 
        #--------------------------------------------------------------------------------
        xp = self.container.ex_manager.create_xp(self.exchange_point_name)
        subscriber = StandaloneStreamSubscriber(self.exchange_space_name, self.validate_granule_subscription)
        self.queue_buffer.append(self.exchange_space_name)
        subscriber.start()
        subscriber.xn.bind(replay_route.routing_key, xp)

        self.data_retriever.start_replay_agent(self.replay_id)

        self.assertTrue(replay_client.await_agent_ready(5), 'The process never launched')
        replay_client.start_replay()
        
        self.assertTrue(self.event.wait(10))
        subscriber.stop()

        self.data_retriever.cancel_replay_agent(self.replay_id)


        #--------------------------------------------------------------------------------
        # Test the slicing capabilities
        #--------------------------------------------------------------------------------

        granule = self.data_retriever.retrieve(dataset_id=dataset_id, query={'tdoa':slice(0,5)})
        rdt = RecordDictionaryTool.load_from_granule(granule)
        b = rdt['time'] == np.arange(5)
开发者ID:jamie-cyber1,项目名称:coi-services,代码行数:70,代码来源:test_dm_end_2_end.py

示例5: test_replay_integration

# 需要导入模块: from interface.services.dm.idata_retriever_service import DataRetrieverServiceClient [as 别名]
# 或者: from interface.services.dm.idata_retriever_service.DataRetrieverServiceClient import define_replay [as 别名]
    def test_replay_integration(self):
        '''
        test_replay_integration
        '''
        import numpy as np
        # Keep the import it's used in the vector comparison below even though pycharm says its unused.

        cc = self.container
        XP = self.XP
        assertions = self.assertTrue

        ### Every thing below here can be run as a script:
        log.debug('Got it')

        pubsub_management_service = PubsubManagementServiceClient(node=cc.node)
        ingestion_management_service = IngestionManagementServiceClient(node=cc.node)
        dataset_management_service = DatasetManagementServiceClient(node=cc.node)
        data_retriever_service = DataRetrieverServiceClient(node=cc.node)

        datastore_name = 'dm_test_replay_integration'

        producer = Publisher(name=(XP,'stream producer'))

        ingestion_configuration_id = ingestion_management_service.create_ingestion_configuration(
            exchange_point_id=XP,
            couch_storage=CouchStorage(datastore_name=datastore_name,datastore_profile='SCIDATA'),
            hdf_storage=HdfStorage(),
            number_of_workers=1
        )

        ingestion_management_service.activate_ingestion_configuration(
            ingestion_configuration_id=ingestion_configuration_id
        )

        definition = SBE37_CDM_stream_definition()
        data_stream_id = definition.data_stream_id
        encoding_id = definition.identifiables[data_stream_id].encoding_id
        element_count_id = definition.identifiables[data_stream_id].element_count_id

        stream_def_id = pubsub_management_service.create_stream_definition(
            container=definition
        )
        stream_id = pubsub_management_service.create_stream(
            stream_definition_id=stream_def_id
        )

        dataset_id = dataset_management_service.create_dataset(
            stream_id=stream_id,
            datastore_name=datastore_name,
            view_name='datasets/dataset_by_id'
        )
        ingestion_management_service.create_dataset_configuration(
            dataset_id=dataset_id,
            archive_data=True,
            archive_metadata=True,
            ingestion_configuration_id = ingestion_configuration_id
        )
        definition.stream_resource_id = stream_id

        packet = _create_packet(definition)
        input_file = FileSystem.mktemp()
        input_file.write(packet.identifiables[data_stream_id].values)
        input_file_path = input_file.name
        input_file.close()

        fields=[
            'conductivity',
            'height',
            'latitude',
            'longitude',
            'pressure',
            'temperature',
            'time'
        ]

        input_vectors = acquire_data([input_file_path],fields , 2).next()

        producer.publish(msg=packet, to_name=(XP,'%s.data' % stream_id))

        replay_id, replay_stream_id = data_retriever_service.define_replay(dataset_id)
        ar = gevent.event.AsyncResult()
        def sub_listen(msg, headers):

            assertions(isinstance(msg,StreamGranuleContainer),'replayed message is not a granule.')
            hdf_string = msg.identifiables[data_stream_id].values
            sha1 = hashlib.sha1(hdf_string).hexdigest().upper()
            assertions(sha1 == msg.identifiables[encoding_id].sha1,'Checksum failed.')
            assertions(msg.identifiables[element_count_id].value==1, 'record replay count is incorrect %d.' % msg.identifiables[element_count_id].value)
            output_file = FileSystem.mktemp()
            output_file.write(msg.identifiables[data_stream_id].values)
            output_file_path = output_file.name
            output_file.close()
            output_vectors = acquire_data([output_file_path],fields,2).next()
            for field in fields:
                comparison = (input_vectors[field]['values']==output_vectors[field]['values'])
                assertions(comparison.all(), 'vector mismatch: %s vs %s' %
                                             (input_vectors[field]['values'],output_vectors[field]['values']))
            FileSystem.unlink(output_file_path)
            ar.set(True)

#.........这里部分代码省略.........
开发者ID:dstuebe,项目名称:coi-services,代码行数:103,代码来源:test_replay_integration.py

示例6: TestDMEnd2End

# 需要导入模块: from interface.services.dm.idata_retriever_service import DataRetrieverServiceClient [as 别名]
# 或者: from interface.services.dm.idata_retriever_service.DataRetrieverServiceClient import define_replay [as 别名]

#.........这里部分代码省略.........
        # - call persist_data_stream to setup the subscription for the ingestion workers
        #   on the stream that you specify which causes the data to be persisted
        # --------------------------------------------------------------------------------

        ingest_config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(
            stream_id=stream_id, ingestion_configuration_id=ingest_config_id, dataset_id=dataset_id
        )

        # --------------------------------------------------------------------------------
        # Now the granules are ingesting and persisted
        # --------------------------------------------------------------------------------

        self.launch_producer(stream_id)
        self.wait_until_we_have_enough_granules(dataset_id, 40)

        # --------------------------------------------------------------------------------
        # Now get the data in one chunk using an RPC Call to start_retreive
        # --------------------------------------------------------------------------------

        replay_data = self.data_retriever.retrieve(dataset_id)
        self.assertIsInstance(replay_data, Granule)
        rdt = RecordDictionaryTool.load_from_granule(replay_data)
        self.assertTrue((rdt["time"][:10] == np.arange(10)).all(), "%s" % rdt["time"][:])
        self.assertTrue((rdt["binary"][:10] == np.array(["hi"] * 10, dtype="object")).all())

        # --------------------------------------------------------------------------------
        # Now to try the streamed approach
        # --------------------------------------------------------------------------------
        replay_stream_id, replay_route = self.pubsub_management.create_stream(
            "replay_out", exchange_point=self.exchange_point_name, stream_definition_id=stream_definition
        )
        self.replay_id, process_id = self.data_retriever.define_replay(
            dataset_id=dataset_id, stream_id=replay_stream_id
        )
        log.info("Process ID: %s", process_id)

        replay_client = ReplayClient(process_id)

        # --------------------------------------------------------------------------------
        # Create the listening endpoint for the the retriever to talk to
        # --------------------------------------------------------------------------------
        xp = self.container.ex_manager.create_xp(self.exchange_point_name)
        subscriber = StandaloneStreamSubscriber(self.exchange_space_name, self.validate_granule_subscription)
        self.queue_buffer.append(self.exchange_space_name)
        subscriber.start()
        subscriber.xn.bind(replay_route.routing_key, xp)

        self.data_retriever.start_replay_agent(self.replay_id)

        self.assertTrue(replay_client.await_agent_ready(5), "The process never launched")
        replay_client.start_replay()

        self.assertTrue(self.event.wait(10))
        subscriber.stop()

        self.data_retriever.cancel_replay_agent(self.replay_id)

        # --------------------------------------------------------------------------------
        # Test the slicing capabilities
        # --------------------------------------------------------------------------------

        granule = self.data_retriever.retrieve(dataset_id=dataset_id, query={"tdoa": slice(0, 5)})
        rdt = RecordDictionaryTool.load_from_granule(granule)
        b = rdt["time"] == np.arange(5)
开发者ID:blazetopher,项目名称:coi-services,代码行数:70,代码来源:test_dm_end_2_end.py

示例7: test_blog_ingestion_replay

# 需要导入模块: from interface.services.dm.idata_retriever_service import DataRetrieverServiceClient [as 别名]
# 或者: from interface.services.dm.idata_retriever_service.DataRetrieverServiceClient import define_replay [as 别名]

#.........这里部分代码省略.........
                break

        ###=======================================================
        ### This section is not scriptable
        ###=======================================================


        if len(post_ids) < 3:
            self.fail('Not enough comments returned by the blog scrappers in 30 seconds')

        if len(captured_input.blogs) < 1:
            self.fail('No data returned in ten seconds by the blog scrappers!')

        ###=======================================================
        ### End non-scriptable
        ###=======================================================


        #------------------------------------------------------------------------------------------------------
        # Create subscriber to listen to the replays
        #------------------------------------------------------------------------------------------------------

        captured_replays = {}

        for idx, post_id in enumerate(post_ids):
            # Create the stateful listener to hold the captured data for comparison with replay


            dataset_id = dsm_cli.create_dataset(
                stream_id=post_id,
                datastore_name='dm_datastore',
                view_name='posts/posts_join_comments')

            replay_id, stream_id =dr_cli.define_replay(dataset_id)


            query = StreamQuery(stream_ids=[stream_id])

            captured_replay = BlogListener()

            #------------------------------------------------------------------------------------------------------
            # Create subscriber to listen to the messages published to the ingestion
            #------------------------------------------------------------------------------------------------------

            # Make a subscription to the input stream to ingestion
            subscription_name = 'replay_capture_queue_%d' % idx
            subscription_id = pubsub_cli.create_subscription(query = query, exchange_name=subscription_name ,name = subscription_name)


            # It is not required or even generally a good idea to use the subscription resource name as the queue name, but it makes things simple here
            # Normally the container creates and starts subscribers for you when a transform process is spawned
            subscriber = subscriber_registrar.create_subscriber(exchange_name=subscription_name, callback=captured_replay.blog_store)
            subscriber.start()

            captured_replay.subscriber = subscriber

            pubsub_cli.activate_subscription(subscription_id)

            #------------------------------------------------------------------------------------------------------
            # Start the replay and listen to the results!
            #------------------------------------------------------------------------------------------------------

            dr_cli.start_replay(replay_id)

            captured_replays[post_id] = captured_replay
开发者ID:daf,项目名称:coi-services,代码行数:69,代码来源:test_blog_integration.py

示例8: DataRetrieverServiceIntTest

# 需要导入模块: from interface.services.dm.idata_retriever_service import DataRetrieverServiceClient [as 别名]
# 或者: from interface.services.dm.idata_retriever_service.DataRetrieverServiceClient import define_replay [as 别名]
class DataRetrieverServiceIntTest(IonIntegrationTestCase):
    def setUp(self):
        super(DataRetrieverServiceIntTest,self).setUp()
        self._start_container()
        self.container.start_rel_from_url('res/deploy/r2dm.yml')

        self.couch = self.container.datastore_manager.get_datastore('test_data_retriever', profile=DataStore.DS_PROFILE.EXAMPLES)
        self.datastore_name = 'test_data_retriever'

        self.dr_cli = DataRetrieverServiceClient(node=self.container.node)
        self.dsm_cli = DatasetManagementServiceClient(node=self.container.node)
        self.rr_cli = ResourceRegistryServiceClient(node=self.container.node)
        self.ps_cli = PubsubManagementServiceClient(node=self.container.node)


    def tearDown(self):
        super(DataRetrieverServiceIntTest,self).tearDown()


    @unittest.skipIf(os.getenv('CEI_LAUNCH_TEST', False), 'Skip test while in CEI LAUNCH mode')
    def test_define_replay(self):
        dataset_id = self.dsm_cli.create_dataset(
            stream_id='12345',
            datastore_name=self.datastore_name,
            view_name='posts/posts_join_comments',
            name='test define replay'
        )
        replay_id, stream_id = self.dr_cli.define_replay(dataset_id=dataset_id)

        replay = self.rr_cli.read(replay_id)

        # Assert that the process was created

        self.assertTrue(self.container.proc_manager.procs[replay.process_id])

        self.dr_cli.cancel_replay(replay_id)

    @unittest.skipIf(os.getenv('CEI_LAUNCH_TEST', False), 'Skip test while in CEI LAUNCH mode')
    def test_cancel_replay(self):
        dataset_id = self.dsm_cli.create_dataset(
            stream_id='12345',
            datastore_name=self.datastore_name,
            view_name='posts/posts_join_comments',
            name='test define replay'
        )
        replay_id, stream_id = self.dr_cli.define_replay(dataset_id=dataset_id)

        replay = self.rr_cli.read(replay_id)

        # Assert that the process was created

        self.assertTrue(self.container.proc_manager.procs[replay.process_id])

        self.dr_cli.cancel_replay(replay_id)

        # assert that the process is no more
        self.assertFalse(replay.process_id in self.container.proc_manager.procs)

        # assert that the resource no longer exists
        with self.assertRaises(NotFound):
            self.rr_cli.read(replay_id)

    @unittest.skipIf(os.getenv('CEI_LAUNCH_TEST', False), 'Skip test while in CEI LAUNCH mode')
    def test_start_replay(self):
        post = BlogPost(title='test blog post', post_id='12345', author=BlogAuthor(name='Jon Doe'), content='this is a blog post',
        updated=time.strftime("%Y-%m-%dT%H:%M%S-05"))

        dataset_id = self.dsm_cli.create_dataset(
            stream_id='12345',
            datastore_name=self.datastore_name,
            view_name='posts/posts_join_comments',
            name='blog posts test'
        )

        self.couch.create(post)

        replay_id, stream_id = self.dr_cli.define_replay(dataset_id)
        replay = self.rr_cli.read(replay_id)


        # assert that the process was created

        self.assertTrue(self.container.proc_manager.procs[replay.process_id])

        # pattern from Tim G
        ar = gevent.event.AsyncResult()
        def consume(message, headers):
            ar.set(message)

        stream_subscriber = StreamSubscriberRegistrar(process=self.container, node=self.container.node)
        subscriber = stream_subscriber.create_subscriber(exchange_name='test_queue', callback=consume)
        subscriber.start()

        query = StreamQuery(stream_ids=[stream_id])
        subscription_id = self.ps_cli.create_subscription(query=query,exchange_name='test_queue')
        self.ps_cli.activate_subscription(subscription_id)

        self.dr_cli.start_replay(replay_id)
        self.assertEqual(ar.get(timeout=10).post_id,post.post_id)

#.........这里部分代码省略.........
开发者ID:daf,项目名称:coi-services,代码行数:103,代码来源:data_retriever_test.py

示例9: DMCollaborationIntTest

# 需要导入模块: from interface.services.dm.idata_retriever_service import DataRetrieverServiceClient [as 别名]
# 或者: from interface.services.dm.idata_retriever_service.DataRetrieverServiceClient import define_replay [as 别名]
class DMCollaborationIntTest(IonIntegrationTestCase):
    def setUp(self):
        self._start_container()
        config = DotDict()
        config.bootstrap.processes.ingestion.module = 'ion.processes.data.ingestion.ingestion_worker_a'
        config.bootstrap.processes.replay.module    = 'ion.processes.data.replay.replay_process_a'
        self.container.start_rel_from_url('res/deploy/r2dm.yml', config)


        self.datastore_name = 'test_datasets'
        self.pubsub_management    = PubsubManagementServiceClient()
        self.ingestion_management = IngestionManagementServiceClient()
        self.dataset_management   = DatasetManagementServiceClient()
        self.process_dispatcher   = ProcessDispatcherServiceClient()
        self.data_retriever       = DataRetrieverServiceClient()

    def subscriber_action(self, msg, header):
        if not hasattr(self,'received'):
            self.received = 0
        if not hasattr(self, 'async_done'):
            self.async_done = AsyncResult()
        self.received += 1
        if self.received >= 2:
            self.async_done.set(True)


    def test_ingest_to_replay(self):

        self.async_done = AsyncResult()
        sysname = get_sys_name()


        datastore = self.container.datastore_manager.get_datastore(self.datastore_name,'SCIDATA')


        producer_definition = ProcessDefinition(name='Example Data Producer')
        producer_definition.executable = {
            'module':'ion.processes.data.example_data_producer',
            'class' :'ExampleDataProducer'
        }

        process_definition_id = self.process_dispatcher.create_process_definition(process_definition=producer_definition)
        
        ingestion_configuration_id = self.ingestion_management.create_ingestion_configuration(
            exchange_point_id = 'science_data',
            couch_storage=CouchStorage(datastore_name=self.datastore_name,datastore_profile='SCIDATA'),
            number_of_workers=1
        )

        self.ingestion_management.activate_ingestion_configuration(
                ingestion_configuration_id=ingestion_configuration_id)

        stream_id = self.pubsub_management.create_stream(name='data stream')
        
        dataset_id = self.dataset_management.create_dataset(
            stream_id = stream_id, 
            datastore_name = self.datastore_name,
        )

        self.ingestion_management.create_dataset_configuration(
            dataset_id = dataset_id,
            archive_data = True,
            archive_metadata = True,
            ingestion_configuration_id = ingestion_configuration_id
        )

        configuration = {
            'process': {
                'stream_id' : stream_id
            }
        }

        self.process_dispatcher.schedule_process(process_definition_id, configuration=configuration)

        replay_id, stream_id = self.data_retriever.define_replay(dataset_id = dataset_id)

        subscriber = Subscriber(name=('%s.science_data' % sysname, 'test_queue'), callback=self.subscriber_action, binding='%s.data' % stream_id)
        gevent.spawn(subscriber.listen)

        done = False
        while not done:
            results = datastore.query_view('manifest/by_dataset')
            if len(results) >= 2:
                done = True

        self.data_retriever.start_replay(replay_id)

        self.async_done.get(timeout=10)
开发者ID:ooici-eoi,项目名称:coi-services,代码行数:90,代码来源:collaboration_test.py

示例10: TestDMEnd2End

# 需要导入模块: from interface.services.dm.idata_retriever_service import DataRetrieverServiceClient [as 别名]
# 或者: from interface.services.dm.idata_retriever_service.DataRetrieverServiceClient import define_replay [as 别名]

#.........这里部分代码省略.........
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext('binary',  param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context('binary', bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext('records', param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context('records', rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary('replay_pdict', parameter_context_ids=context_ids, temporal_context='time')
        

        stream_def_id = self.pubsub_management.create_stream_definition('replay_stream', parameter_dictionary_id=pdict_id)
        replay_stream, replay_route = self.pubsub_management.create_stream('replay', 'xp1', stream_definition_id=stream_def_id)
        dataset_id = self.create_dataset(pdict_id)
        scov = DatasetManagementService._get_coverage(dataset_id)

        bb = CoverageCraft(scov)
        bb.rdt['time'] = np.arange(100)
        bb.rdt['temp'] = np.random.random(100) + 30
        bb.sync_with_granule()

        DatasetManagementService._persist_coverage(dataset_id, bb.coverage) # This invalidates it for multi-host configurations
        # Set up the subscriber to verify the data
        subscriber = StandaloneStreamSubscriber(self.exchange_space_name, self.validate_granule_subscription)
        xp = self.container.ex_manager.create_xp('xp1')
        self.queue_buffer.append(self.exchange_space_name)
        subscriber.start()
        subscriber.xn.bind(replay_route.routing_key, xp)

        # Set up the replay agent and the client wrapper

        # 1) Define the Replay (dataset and stream to publish on)
        self.replay_id, process_id = self.data_retriever.define_replay(dataset_id=dataset_id, stream_id=replay_stream)
        # 2) Make a client to the interact with the process (optionall provide it a process to bind with)
        replay_client = ReplayClient(process_id)
        # 3) Start the agent (launch the process)
        self.data_retriever.start_replay_agent(self.replay_id)
        # 4) Start replaying...
        replay_client.start_replay()
        
        # Wait till we get some granules
        self.assertTrue(self.event.wait(5))
        
        # We got granules, pause the replay, clear the queue and allow the process to finish consuming
        replay_client.pause_replay()
        gevent.sleep(1)
        subscriber.xn.purge()
        self.event.clear()
        
        # Make sure there's no remaining messages being consumed
        self.assertFalse(self.event.wait(1))

        # Resume the replay and wait until we start getting granules again
        replay_client.resume_replay()
        self.assertTrue(self.event.wait(5))
    
        # Stop the replay, clear the queues
        replay_client.stop_replay()
        gevent.sleep(1)
        subscriber.xn.purge()
        self.event.clear()

        # Make sure that it did indeed stop
        self.assertFalse(self.event.wait(1))
开发者ID:tomoreilly,项目名称:coi-services,代码行数:69,代码来源:test_dm_end_2_end.py

示例11: test_replay_integration

# 需要导入模块: from interface.services.dm.idata_retriever_service import DataRetrieverServiceClient [as 别名]
# 或者: from interface.services.dm.idata_retriever_service.DataRetrieverServiceClient import define_replay [as 别名]

#.........这里部分代码省略.........

        #------------------------------------------------------------------------------------------------------
        # Set up the test hooks for the gevent event AsyncResult object
        #------------------------------------------------------------------------------------------------------

        def ingestion_worker_received(message, headers):
            ar.set(message)

        proc_1.ingest_process_test_hook = ingestion_worker_received

        #------------------------------------------------------------------------------------------------------
        # Set up the producers (CTD Simulators)
        #------------------------------------------------------------------------------------------------------

        ctd_stream_def = ctd_stream_definition()

        stream_def_id = pubsub_management_service.create_stream_definition(container=ctd_stream_def, name='Junk definition')


        stream_id = pubsub_management_service.create_stream(stream_definition_id=stream_def_id)

        #------------------------------------------------------------------------------------------------------
        # Set up the dataset config
        #------------------------------------------------------------------------------------------------------


        dataset_id = dataset_management_service.create_dataset(
            stream_id=stream_id,
            datastore_name=datastore_name,
            view_name='datasets/stream_join_granule'
        )

        dataset_config_id = ingestion_management_service.create_dataset_configuration(
            dataset_id = dataset_id,
            archive_data = True,
            archive_metadata = True,
            ingestion_configuration_id = ingestion_configuration_id
        )

        #------------------------------------------------------------------------------------------------------
        # Launch a ctd_publisher
        #------------------------------------------------------------------------------------------------------

        publisher = publisher_registrar.create_publisher(stream_id=stream_id)

        #------------------------------------------------------------------------
        # Create a packet and publish it
        #------------------------------------------------------------------------

        ctd_packet = _create_packet(stream_id)
        published_hdfstring = ctd_packet.identifiables['ctd_data'].values

        publisher.publish(ctd_packet)

        #------------------------------------------------------------------------------------------------------
        # Catch what the ingestion worker gets! Assert it is the same packet that was published!
        #------------------------------------------------------------------------------------------------------

        packet = ar.get(timeout=2)

        #------------------------------------------------------------------------------------------------------
        # Create subscriber to listen to the replays
        #------------------------------------------------------------------------------------------------------

        replay_id, replay_stream_id = data_retriever_service.define_replay(dataset_id)

        query = StreamQuery(stream_ids=[replay_stream_id])

        subscription_id = pubsub_management_service.create_subscription(query = query, exchange_name='replay_capture_point' ,name = 'replay_capture_point')

        # It is not required or even generally a good idea to use the subscription resource name as the queue name, but it makes things simple here
        # Normally the container creates and starts subscribers for you when a transform process is spawned
        subscriber = subscriber_registrar.create_subscriber(exchange_name='replay_capture_point', callback=_subscriber_call_back)
        subscriber.start()

        pubsub_management_service.activate_subscription(subscription_id)

        #------------------------------------------------------------------------------------------------------
        # Start the replay
        #------------------------------------------------------------------------------------------------------

        data_retriever_service.start_replay(replay_id)

        #------------------------------------------------------------------------------------------------------
        # Get the hdf string from the captured stream in the replay
        #------------------------------------------------------------------------------------------------------

        retrieved_hdf_string  = ar2.get(timeout=2)


        ### Non scriptable portion of the test

        #------------------------------------------------------------------------------------------------------
        # Assert that it matches the message we sent
        #------------------------------------------------------------------------------------------------------

        self.assertEquals(packet.identifiables['stream_encoding'].sha1, ctd_packet.identifiables['stream_encoding'].sha1)


        self.assertEquals(retrieved_hdf_string, published_hdfstring)
开发者ID:daf,项目名称:coi-services,代码行数:104,代码来源:test_replay_integration.py

示例12: TestDMEnd2End

# 需要导入模块: from interface.services.dm.idata_retriever_service import DataRetrieverServiceClient [as 别名]
# 或者: from interface.services.dm.idata_retriever_service.DataRetrieverServiceClient import define_replay [as 别名]

#.........这里部分代码省略.........
        self.launch_producer(stream_id)

        # --------------------------------------------------------------------------------
        # Start persisting the data on the stream
        # - Get the ingestion configuration from the resource registry
        # - Create the dataset
        # - call persist_data_stream to setup the subscription for the ingestion workers
        #   on the stream that you specify which causes the data to be persisted
        # --------------------------------------------------------------------------------

        ingest_config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset()
        self.ingestion_management.persist_data_stream(
            stream_id=stream_id, ingestion_configuration_id=ingest_config_id, dataset_id=dataset_id
        )

        # --------------------------------------------------------------------------------
        # Now the granules are ingesting and persisted
        # --------------------------------------------------------------------------------

        self.wait_until_we_have_enough_granules(dataset_id, 4)

        # --------------------------------------------------------------------------------
        # Now get the data in one chunk using an RPC Call to start_retreive
        # --------------------------------------------------------------------------------

        replay_data = self.data_retriever.retrieve(dataset_id)
        self.assertIsInstance(replay_data, Granule)

        # --------------------------------------------------------------------------------
        # Now to try the streamed approach
        # --------------------------------------------------------------------------------

        replay_id, stream_id = self.data_retriever.define_replay(dataset_id)

        # --------------------------------------------------------------------------------
        # Create the listening endpoint for the the retriever to talk to
        # --------------------------------------------------------------------------------
        xp = self.container.ex_manager.create_xp(self.exchange_point_name)
        xn = self.container.ex_manager.create_xn_queue(self.exchange_space_name)
        xn.bind("%s.data" % stream_id, xp)
        subscriber = SimpleStreamSubscriber.new_subscriber(
            self.container, self.exchange_space_name, self.validate_granule_subscription
        )
        subscriber.start()

        self.data_retriever.start_replay(replay_id)

        fail = False
        try:
            self.event.wait(10)
        except gevent.Timeout:
            fail = True

        subscriber.stop()

        self.assertTrue(not fail, "Failed to validate the data.")

    def test_replay_by_time(self):
        log.info("starting test...")

        # --------------------------------------------------------------------------------
        # Create the necessary configurations for the test
        # --------------------------------------------------------------------------------
        stream_id = self.pubsub_management.create_stream()
        config_id = self.get_ingestion_config()
开发者ID:pombredanne,项目名称:coi-services,代码行数:70,代码来源:test_dm_end_2_end.py


注:本文中的interface.services.dm.idata_retriever_service.DataRetrieverServiceClient.define_replay方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。