本文整理汇总了Python中indico.modules.events.contributions.models.contributions.Contribution.allocate_friendly_ids方法的典型用法代码示例。如果您正苦于以下问题:Python Contribution.allocate_friendly_ids方法的具体用法?Python Contribution.allocate_friendly_ids怎么用?Python Contribution.allocate_friendly_ids使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类indico.modules.events.contributions.models.contributions.Contribution
的用法示例。
在下文中一共展示了Contribution.allocate_friendly_ids方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_contrib_friendly_id
# 需要导入模块: from indico.modules.events.contributions.models.contributions import Contribution [as 别名]
# 或者: from indico.modules.events.contributions.models.contributions.Contribution import allocate_friendly_ids [as 别名]
def test_contrib_friendly_id(monkeypatch, dummy_event, create_contribution):
counter = Incrementer()
monkeypatch.setattr(contrib_module, 'increment_and_get', counter)
contrib_1 = create_contribution(dummy_event, 'Contribution 1', timedelta(minutes=60))
assert contrib_1.friendly_id == 1
contrib_2 = create_contribution(dummy_event, 'Contribution 2', timedelta(minutes=60))
assert contrib_2.friendly_id == 2
assert counter == 2
# pre-allocate 8 friendly ids
Contribution.allocate_friendly_ids(dummy_event, 8)
assert g.friendly_ids[Contribution][dummy_event.id] == range(3, 11)
assert counter == 10
for fid in g.friendly_ids[Contribution][dummy_event.id][:]:
contrib = create_contribution(dummy_event, 'Contribution {}'.format(fid), timedelta(minutes=30))
assert contrib.friendly_id == fid
# increment_and_get doesn't get called because the ids
# have been pre-allocated
assert counter == 10
示例2: import_contributions_from_csv
# 需要导入模块: from indico.modules.events.contributions.models.contributions import Contribution [as 别名]
# 或者: from indico.modules.events.contributions.models.contributions.Contribution import allocate_friendly_ids [as 别名]
def import_contributions_from_csv(event, f):
"""Import timetable contributions from a CSV file into an event."""
reader = csv.reader(f.read().splitlines())
contrib_data = []
for num_row, row in enumerate(reader, 1):
try:
start_dt, duration, title, first_name, last_name, affiliation, email = \
[to_unicode(value).strip() for value in row]
email = email.lower()
except ValueError:
raise UserValueError(_('Row {}: malformed CSV data - please check that the number of columns is correct')
.format(num_row))
try:
parsed_start_dt = event.tzinfo.localize(dateutil.parser.parse(start_dt)) if start_dt else None
except ValueError:
raise UserValueError(_("Row {row}: can't parse date: \"{date}\"").format(row=num_row, date=start_dt))
try:
parsed_duration = timedelta(minutes=int(duration)) if duration else None
except ValueError:
raise UserValueError(_("Row {row}: can't parse duration: {duration}").format(row=num_row,
duration=duration))
if not title:
raise UserValueError(_("Row {}: contribution title is required").format(num_row))
if email and not validate_email(email):
raise UserValueError(_("Row {row}: invalid email address: {email}").format(row=num_row, email=email))
contrib_data.append({
'start_dt': parsed_start_dt,
'duration': parsed_duration or timedelta(minutes=20),
'title': title,
'speaker': {
'first_name': first_name,
'last_name': last_name,
'affiliation': affiliation,
'email': email
}
})
# now that we're sure the data is OK, let's pre-allocate the friendly ids
# for the contributions in question
Contribution.allocate_friendly_ids(event, len(contrib_data))
contributions = []
all_changes = defaultdict(list)
for contrib_fields in contrib_data:
speaker_data = contrib_fields.pop('speaker')
with track_time_changes() as changes:
contribution = create_contribution(event, contrib_fields, extend_parent=True)
contributions.append(contribution)
for key, val in changes[event].viewitems():
all_changes[key].append(val)
email = speaker_data['email']
if not email:
continue
# set the information of the speaker
person = get_event_person(event, {
'firstName': speaker_data['first_name'],
'familyName': speaker_data['last_name'],
'affiliation': speaker_data['affiliation'],
'email': email
})
link = ContributionPersonLink(person=person, is_speaker=True)
link.populate_from_dict({
'first_name': speaker_data['first_name'],
'last_name': speaker_data['last_name'],
'affiliation': speaker_data['affiliation']
})
contribution.person_links.append(link)
return contributions, all_changes