本文整理汇总了Python中imutils.video.VideoStream类的典型用法代码示例。如果您正苦于以下问题:Python VideoStream类的具体用法?Python VideoStream怎么用?Python VideoStream使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了VideoStream类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: Video
class Video():
def __init__(self):
self.vs = VideoStream(usePiCamera=1 > 0).start()
time.sleep(2.0)
self.currentFrame = np.array([])
self.raw_img = np.array([])
def captureRawFrame(self):
"""
capture frame and reverse RBG BGR and return opencv image
"""
rawFrame = self.vs.read()
rawFrame = imutils.resize(rawFrame, width=640)
self.raw_img = rawFrame
#return rawFrame
def convertFrame(self):
"""
converts frame to format suitable for QtGui
"""
try:
self.currentFrame = cv2.cvtColor(self.raw_img, cv2.COLOR_BGR2RGB)
height, width = self.currentFrame.shape[:2]
img = QtGui.QImage(self.currentFrame,
width,
height,
QtGui.QImage.Format_RGB888)
img = QtGui.QPixmap.fromImage(img)
#self.previousFrame = self.currentFrame
img = img.scaledToHeight(480)
img = img.scaledToWidth(360)
return img
except:
return None
示例2: __init__
def __init__(self):
# initialize the video stream and allow the camera
# sensor to warmup
self.vs = VideoStream(usePiCamera=1 > 0).start()
time.sleep(2.0)
self.currentFrame = np.array([])
self.raw_img = np.array([])
self.writer = None
(h, w) = (None, None)
示例3: main
def main():
global frame, key
# initialize the camera and grab a reference to the raw camera capture
wdth = int(math.floor(360))
hgth = int(math.floor(800))
camera = VideoStream(usePiCamera=True,resolution=(wdth,hgth)).start()
time.sleep(2.0)
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
writer = None
(h,w) = (None, None)
# setup the mouse callback
cv2.startWindowThread()
cv2.namedWindow("Detection")
cv2.setMouseCallback("Detection",mouseOn)
# keep looping over the frames
#for frame2 in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
while True:
frame = camera.read();
frame = cv2.transpose(frame);
frame = cv2.flip(frame,1)
timestamp = datetime.datetime.now()
ts = timestamp.strftime("%d/%m/%Y %H:%M:%S")
cv2.putText(frame,ts,(10,frame.shape[0]-10),cv2.FONT_HERSHEY_SIMPLEX,0.35,(0,255,0),1)
if writer is None:
(h,w) = frame.shape[:2]
writer = cv2.VideoWriter("/media/usb/test_" + timestamp.strftime("%d_%m_%Y_%H%M") + ".avi", fourcc,5,(w,h), True)
writer.write(frame)
cv2.imshow("Detection", frame);
#cv2.setMouseCallback("Detection",mouseOn)
#key = cv2.waitKey(10) & 0xFF
# if the 'q' key is pressed, stop the loop
if key == ord("q"): #cv2.EVENT_LBUTTONDOWN: #ord("q"):
# cv2.destroyAllWindows()
# camera.stop()
break
# cleanup the camera and close any open windows
cv2.destroyAllWindows()
camera.stop()
示例4: recordVideo
class recordVideo():
def __init__(self):
# initialize the video stream and allow the camera
# sensor to warmup
self.vs = VideoStream(usePiCamera=1 > 0).start()
time.sleep(2.0)
self.currentFrame = np.array([])
self.raw_img = np.array([])
self.writer = None
(h, w) = (None, None)
def captureRawFrame(self):
"""
capture frame and reverse RBG BGR and return opencv image, and also record the video
"""
rawFrame = self.vs.read()
rawFrame = imutils.resize(rawFrame, width=640)
self.raw_img = rawFrame
#return rawFrame
def initRecord(self):
if self.writer == None:
# store the image dimensions, initialzie the video writer,
# and construct the zeros array
#(h, w) = self.raw_img.shape[:2]
self.writer = cv2.VideoWriter('./demoVideo/'+str(int(time.time()))+'.avi', cv2.cv.FOURCC(*"XVID"), 15,
(640 , 480 ), True)
def record(self):
# write the output frame to file
self.writer.write(self.raw_img)
def convertFrame(self):
"""
converts frame to format suitable for QtGui
"""
try:
self.currentFrame = cv2.cvtColor(self.raw_img, cv2.COLOR_BGR2RGB)
height, width = self.currentFrame.shape[:2]
img = QtGui.QImage(self.currentFrame,
width,
height,
QtGui.QImage.Format_RGB888)
img = QtGui.QPixmap.fromImage(img)
#self.previousFrame = self.currentFrame
img = img.scaledToHeight(480)
img = img.scaledToWidth(360)
return img
except:
return None
示例5: VideoStream
import sys
import time
from imutils.video import VideoStream
import imutils
# define the lower and upper boundaries of the red in HSV
redLower1 = (0, 100, 100)
redUpper1 = (10, 255, 255)
redLower2 = (160, 100, 100)
redUpper2 = (179, 255, 255)
# initialize the list of tracked points, the frame counter,
# and the coordinate deltas
(dX, dY) = (0, 0)
video_stream = VideoStream(usePiCamera=False, resolution=(640,480), framerate=32).start()
time.sleep(2)
# keep looping
while True:
# grab the current frame
# image = video_stream.read()
frame = video_stream.read()
# resize the frame, blur it, and convert it to the HSV
# color space
# frame = imutils.resize(image, width=400)
blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the color "green", then perform
示例6: main
def main():
# construction des arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=False, default="/home/pi/Kenobi/recognition/MobileNetSSD_deploy.prototxt.txt",
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=False, default="/home/pi/Kenobi/recognition/MobileNetSSD_deploy.caffemodel",
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.6,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# initialiser la liste des objets entrainés par MobileNet SSD
# création du contour de détection avec une couleur attribuée au hasard pour chaque objet
CLASSES = ["arriere-plan", "avion", "velo", "oiseau", "bateau",
"bouteille", "autobus", "voiture", "chat", "chaise", "vache", "table",
"chien", "cheval", "moto", "personne", "plante", "mouton",
"sofa", "train", "moniteur"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
pygame.mixer.init()
# chargement des fichiers depuis le répertoire de stockage
print(" ...chargement du modèle...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# initialiser la caméra du pi, attendre 2s pour la mise au point ,
# initialiser le compteur FPS
print("...démarrage de la Picamera...")
vs = VideoStream(usePiCamera=True, resolution=(1600, 1200)).start()
time.sleep(2.0)
#fps = FPS().start()
# boucle principale du flux vidéo
while True:
# récupération du flux vidéo, redimension
# afin d'afficher au maximum 800 pixels
frame = vs.read()
frame = imutils.resize(frame, width=800)
# récupération des dimensions et transformation en collection d'images
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 0.007843, (300, 300), 127.5)
# determiner la détection et la prédiction
net.setInput(blob)
detections = net.forward()
# boucle de détection
list_objects = []
for i in np.arange(0, detections.shape[2]):
# calcul de la probabilité de l'objet détecté en fonction de la prédiction
confidence = detections[0, 0, i, 2]
# supprimer les détections faibles inférieures à la probabilité minimale
if confidence > args["confidence"]:
# extraire l'index du type d'objet détecté
# calcul des coordonnées de la fenêtre de détection
idx = int(detections[0, 0, i, 1])
#box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
#(startX, startY, endX, endY) = box.astype("int")
# creation du contour autour de l'objet détecté
# insertion de la prédiction de l'objet détecté
#label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
#cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2)
#y = startY - 15 if startY - 15 > 15 else startY + 15
#cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
# enregistrement de l'image détectée
#cv2.imwrite("detection.png", frame)
obj = CLASSES[idx]
if obj not in list_objects:
list_objects.append(CLASSES[idx])
# affichage du flux vidéo dans une fenètre
#cv2.imshow("Frame", frame)
#key = cv2.waitKey(1) & 0xFF # ligne necessaire pour l'affichage dans la frame
# Pronounce the objects seen
print(list_objects)
for anobject in list_objects:
path_to_sound = "/home/pi/Kenobi/recognition/vocabulary/" + anobject + ".ogg"
if os.path.isfile(path_to_sound):
pygame.mixer.music.load(path_to_sound)
pygame.mixer.music.play()
# Play until end of music file
while pygame.mixer.music.get_busy() == True:
pygame.time.Clock().tick(10)
# la touche q permet d'interrompre la boucle principale
#if key == ord("q"):
# break
# mise à jour du FPS
#fps.update()
# arret du compteur et affichage des informations dans la console
#fps.stop()
#print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
#print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
#.........这里部分代码省略.........
示例7: __init__
def __init__(self):
self.vs = VideoStream(usePiCamera=1 > 0).start()
time.sleep(2.0)
self.currentFrame = np.array([])
self.raw_img = np.array([])
示例8: deque
# define the lower and upper boundaries of the "green"
# ball in the HSV color space
greenLower = (24, 116, 137)
greenUpper = (36, 255, 255)
# initialize the list of tracked points, the frame counter,
# and the coordinate deltas
pts = deque(maxlen=args["buffer"])
counter = 0
(dX, dY) = (0, 0)
direction = ""
# if a video path was not supplied, grab the reference
# to the webcam
if not args.get("video", False):
vs = VideoStream(usePiCamera=1).start()
time.sleep(2.0)
# otherwise, grab a reference to the video file
else:
vs = cv2.VideoCapture(args["video"])
# keep looping
while True:
# grab the current frame
if args.get("video"):
(grabbed, frame) = vs.read()
else:
frame = vs.read()
# if we are viewing a video and we did not grab a frame,
示例9: Matcher
import time
import cv2
import imutils
from imutils.video import VideoStream
from matcher import Matcher
matcher = Matcher([("fau-logo", "./templates/fau-logo.png"),
("first-logo", "./templates/first-logo.jpg"),
("nextera-logo", "./templates/nextera-energy-logo.jpg"),
("techgarage-logo", "./templates/techgarage-logo.png")
], min_keypoints_pct_match=8)
cam = VideoStream(usePiCamera=False).start()
cnt = 0
while True:
img = cam.read()
cv2.imshow("Pic", img)
print matcher.match(img)
key = cv2.waitKey(10)
if key == ord('q'):
break
cam.stop()
cv2.destroyAllWindows()
示例10: VideoStream
import numpy as np, cv2, datetime, time
from imutils.video import VideoStream
import imutils
import argparse
#Argument parser to select picamera or USB webcamera
ap=argparse.ArgumentParser()
ap.add_argument("-p", "--picamera", type=int, default=-1,
help="whether or not the Raspberry Pi camera should be used")
ap.add_argument("-v", "--video", help="path to video file")
ap.add_argument("-b", "--buffer", type=int, default=64, help="max buffer size")
args=vars(ap.parse_args())
camera = VideoStream(usePiCamera=args["picamera"] > 0).start()
time.sleep(2) #camera start time
while True:
#Read the frame
frame = camera.read()
#Reshape to 400 pixel width
frame = imutils.resize(frame, width=400)
#Display frame
cv2.imshow('OrigFrame',frame)
#Press 'q' to quit
key=cv2.waitKey(1)& 0xFF
if key==ord("q"):
break
#close the imshow window
cv2.destroyAllWindows()
示例11: vars
import warnings
import json
import cv2
from tempimage import TempImage
# Parse arguments from JSON config file
ap = argparse.ArgumentParser()
ap.add_argument("-c", "--conf", required=True, help="path to the JSON configuration file")
args = vars(ap.parse_args())
warnings.filterwarnings("ignore")
conf = json.load(open(args["conf"]))
# initialize the video stream and allow the cammera sensor to warmup
#vs = VideoStream(usePiCamera=args["picamera"] > 0).start()
vs = VideoStream(usePiCamera=True, framerate=conf["fps"], resolution=tuple(conf["resolution"])).start()
time.sleep(conf["camera_warmup_time"])
avg = None
lastUploaded = datetime.datetime.now()
motionCounter = 0
# loop over the frames from the video stream
while True:
motionDetected = False
# grab the frame from the threaded video stream and resize it
# resize the frame, convert it to grayscale, and blur it
frame = vs.read()
analysisFrame = imutils.resize(frame, width=conf["opencv_image_width"])
gray = cv2.cvtColor(analysisFrame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21, 21), 0)
示例12: print
else:
if args['rangefilter'].upper() == "RGB":
print("Error! RGB is currently unsupported, sorry!")
else:
color_range = args['color']
colorLower = color_range[0:3]
colorUpper = color_range[3:6]
video_extensions = ("3g2", "3gp", "asf", "asx", "avi", "flv", "m4v", "mov", "mp4", "mpg", "rm", "swf", "vob", "wmv")
if str(source.endswith(video_extensions)):
video = True
else:
video = False
# created a threaded video stream
vs = VideoStream(src=args["source"]).start()
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
(grabbed, frame) = vs.read()
if video and not grabbed:
break
# resize the frame, blur it, and convert it to the HSV
# color space
frame = imutils.resize(frame, width=600)
blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the set color, then perform
示例13: viewCameraPi
def viewCameraPi(self):
#text = 'This is a message from app to inform that app start running now!'
#statusSMS = outboundSMSviaTwilio(account=self.account, token=self.token, destPhone=self.destPhone1,
# twilioNumber=self.twilioNumber, message_body=text)
#statusSMS = outboundSMSviaTwilio(account=self.account, token=self.token, destPhone=self.destPhone2,
# twilioNumber=self.twilioNumber, message_body=text)
print("START SCRIPT AND MAJOR WARNING!")
statusSMS = 'delivered'
if((statusSMS != 'failed') and (statusSMS != 'undelivered')):
#camera = PiCamera()
#camera.resolution = ( 640, 480)
#camera.framerate = 32
#rawCapture = PiRGBArray(camera, size=( 640, 480))
#self.sumMSE = self.sumSSIM = self.avgMSE = self.avgSSIM = 0
self.tempHour = datetime.datetime.now().hour
self.tempMinute = datetime.datetime.now().minute
self.warmup = 0
vs = VideoStream(usePiCamera=1,resolution=(640,480)).start()
time.sleep(1.2)
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = None
(h, w) = (None, None)
zeros = None
print ("view camera")
while True:
self.warmup+=1
if(self.warmup >=5):
frame = vs.read()
if writer is None:
# store the image dimensions, initialzie the video writer,
# and construct the zeros array
(h, w) = frame.shape[:2]
writer = cv2.VideoWriter('exampleTH3.avi', fourcc, 20,
(w, h), True)
writer.write(frame)
self.curImage = frame
self.getDefImagePerHours()
#write xml
print("process frame thu {}".format(self.warmup-4))
self.writeXML()
#tat chuong trinh sau 5 phut:
if(datetime.datetime.now().minute - self.tempMinute >5):
self.final()
break
# for frame in camera.capture_continuous( rawCapture, format("bgr"), use_video_port = True):
#
# self.curImage = frame.array
# frame = vs.read()
# self.warmup +=1
# if(self.warmup >=5):
# self.getDefImagePerHours()
# # self.getDefImagePerTenMinutes()
#
# #write xml
# print("process frame thu {}".format(self.warmup-4))
# self.writeXML()
#
# #warning
# # self.warning()
#
# #tat chuong trinh sau 5 phut:
# if(datetime.datetime.now().minute - self.tempMinute >5):
# self.final()
# break
# #neu la 16h, script se tu tat
# # tempBreak = datetime.datetime.now().hour
# # if(( tempBreak == 0) or (tempBreak == 6) or (tempBreak == 18) or (tempBreak == 12)):
# # if(datetime.datetime.now().minute == 0):
# # if((datetime.datetime.now().second >= 0) and (datetime.datetime.now().second <=3)):
# # self.final()
# # self.__init__(tempBreak)
#
# # show frame
# # cv2.imshow("image", self.curImage)
# # key = cv2.waitKey(1) & 0xFF
#
# #renew
# rawCapture.truncate(0)
#
# #press 'q' to stop, press any key to continue
# # if(key == ord("q")):
# # break
#call function final
vs.stop()
writer.release()
self.final()
else :
#.........这里部分代码省略.........
示例14: VideoStream
FRAME_WIDTH = 640
FRAME_HEIGHT = 480
# 依不同的 cascade 做調整
# lbpcascade_frontalface: 1.1
# haarcascade_frontalface_alt2: 1.3
SCALE_FACTOR = 1.1
MIN_NEIGHBORS = 5
#MIN_SIZE = 30
MIN_SIZE = 80
cascPath = sys.argv[1]
faceCascade = cv2.CascadeClassifier(cascPath)
if ENABLE_VIDEO_STREAM:
video_capture = VideoStream(usePiCamera=False).start()
else:
video_capture = cv2.VideoCapture(0)
video_capture.set(cv2.CAP_PROP_FRAME_WIDTH, FRAME_WIDTH)
video_capture.set(cv2.CAP_PROP_FRAME_HEIGHT, FRAME_HEIGHT)
time.sleep(1)
t = ticket()
def faceDetect(gray):
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=SCALE_FACTOR,
minNeighbors=MIN_NEIGHBORS,
minSize=(MIN_SIZE, MIN_SIZE),
示例15: vars
ap.add_argument("-c", "--confidence", type = float, default = 0.4, help = "minimum probability to filter weak detections")
ap.add_argument("-s", "--skip-frames", type = int, default = 30, help = "# of skip frames between detections")
args = vars(ap.parse_args())
# initialize the list of class labels
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
# load our serialized model from the disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# if a video path was not supplied, grab a reference to the webcam
if not args.get("input", False):
print("[INFO] Starting video stream...")
vs = VideoStream(src = 0).start()
time.sleep(2.0)
# otherwise, grab a reference to the video file
else:
print("[INFO] opening the video file...")
vs = cv2.VideoCapture(args["input"])
# initialize the video writer
writer = None
# initialize the frame dimensions
W = None
H = None