当前位置: 首页>>代码示例>>Python>>正文


Python RepeatedEditedNearestNeighbours.fit_resample方法代码示例

本文整理汇总了Python中imblearn.under_sampling.RepeatedEditedNearestNeighbours.fit_resample方法的典型用法代码示例。如果您正苦于以下问题:Python RepeatedEditedNearestNeighbours.fit_resample方法的具体用法?Python RepeatedEditedNearestNeighbours.fit_resample怎么用?Python RepeatedEditedNearestNeighbours.fit_resample使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在imblearn.under_sampling.RepeatedEditedNearestNeighbours的用法示例。


在下文中一共展示了RepeatedEditedNearestNeighbours.fit_resample方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_renn_fit_resample_with_indices

# 需要导入模块: from imblearn.under_sampling import RepeatedEditedNearestNeighbours [as 别名]
# 或者: from imblearn.under_sampling.RepeatedEditedNearestNeighbours import fit_resample [as 别名]
def test_renn_fit_resample_with_indices():
    renn = RepeatedEditedNearestNeighbours(return_indices=True)
    X_resampled, y_resampled, idx_under = renn.fit_resample(X, Y)

    X_gt = np.array([[-0.53171468, -0.53735182], [-0.88864036, -0.33782387], [
        -0.46226554, -0.50481004
    ], [-0.34474418, 0.21969797], [1.02956816, 0.36061601], [
        1.12202806, 0.33811558
    ], [0.73489726, 0.43915195], [0.50307437, 0.498805], [
        0.84929742, 0.41042894
    ], [0.62649535, 0.46600596], [0.98382284, 0.37184502], [
        0.69804044, 0.44810796
    ], [0.04296502, -0.37981873], [0.28294738, -1.00125525], [
        0.34218094, -0.58781961
    ], [0.2096964, -0.61814058], [1.59068979, -0.96622933], [
        0.73418199, -0.02222847
    ], [0.79270821, -0.41386668], [1.16606871, -0.25641059],
                     [1.0304995, -0.16955962], [0.48921682, -1.38504507],
                     [-0.03918551, -0.68540745], [0.24991051, -1.00864997],
                     [0.80541964, -0.34465185], [0.1732627, -1.61323172]])
    y_gt = np.array([
        0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2
    ])
    idx_gt = np.array([
        6, 13, 32, 39, 4, 5, 16, 22, 23, 24, 30, 37, 2, 11, 12, 17, 20, 21, 25,
        26, 28, 31, 33, 34, 35, 36
    ])
    assert_array_equal(X_resampled, X_gt)
    assert_array_equal(y_resampled, y_gt)
    assert_array_equal(idx_under, idx_gt)
开发者ID:chkoar,项目名称:imbalanced-learn,代码行数:33,代码来源:test_repeated_edited_nearest_neighbours.py

示例2: test_renn_fit_resample_mode

# 需要导入模块: from imblearn.under_sampling import RepeatedEditedNearestNeighbours [as 别名]
# 或者: from imblearn.under_sampling.RepeatedEditedNearestNeighbours import fit_resample [as 别名]
def test_renn_fit_resample_mode():
    nn = NearestNeighbors(n_neighbors=4)
    renn = RepeatedEditedNearestNeighbours(n_neighbors=nn, kind_sel='mode')
    X_resampled, y_resampled = renn.fit_resample(X, Y)

    X_gt = np.array([[-0.53171468, -0.53735182], [-0.88864036, -0.33782387], [
        -0.46226554, -0.50481004
    ], [-0.34474418, 0.21969797], [-0.12840393, 0.66446571], [
        1.02956816, 0.36061601
    ], [1.12202806, 0.33811558], [-0.35946678, 0.72510189], [
        2.94290565, -0.13986434
    ], [-1.10146139, 0.91782682], [0.73489726, 0.43915195], [
        -0.28479268, 0.70459548
    ], [1.84864913, 0.14729596], [0.50307437, 0.498805], [
        0.84929742, 0.41042894
    ], [0.62649535, 0.46600596], [1.67314371, 0.19231498], [
        0.98382284, 0.37184502
    ], [0.69804044, 0.44810796], [1.32319756, -0.13181616], [
        0.04296502, -0.37981873
    ], [0.28294738, -1.00125525], [0.34218094, -0.58781961], [
        0.2096964, -0.61814058
    ], [1.59068979, -0.96622933], [0.73418199, -0.02222847], [
        0.79270821, -0.41386668
    ], [1.16606871, -0.25641059], [1.0304995, -0.16955962], [
        0.48921682, -1.38504507
    ], [-0.03918551, -0.68540745], [0.24991051, -1.00864997],
                     [0.80541964, -0.34465185], [0.1732627, -1.61323172]])
    y_gt = np.array([
        0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2
    ])
    assert_array_equal(X_resampled, X_gt)
    assert_array_equal(y_resampled, y_gt)
开发者ID:chkoar,项目名称:imbalanced-learn,代码行数:35,代码来源:test_repeated_edited_nearest_neighbours.py

示例3: train_decisiontree_with

# 需要导入模块: from imblearn.under_sampling import RepeatedEditedNearestNeighbours [as 别名]
# 或者: from imblearn.under_sampling.RepeatedEditedNearestNeighbours import fit_resample [as 别名]
def train_decisiontree_with(configurationname, train_data, k, score_function, undersam=False, oversam=False,
                            export=False):
    assert k > 0
    print("Training with configuration " + configurationname)
    X_train, y_train, id_to_a_train = train_data
    dtc = DecisionTreeClassifier(random_state=0)

    print("Feature Selection")
    # selector = SelectFpr(score_function)
    selector = SelectKBest(score_function, k=k)
    result = selector.fit(X_train, y_train)
    X_train = selector.transform(X_train)

    fitted_ids = [i for i in result.get_support(indices=True)]

    print("Apply Resampling")
    print(Counter(y_train))
    if undersam and not oversam:
        renn = RepeatedEditedNearestNeighbours()
        X_train, y_train = renn.fit_resample(X_train, y_train)
    if oversam and not undersam:
        # feature_indices_array = list(range(len(f_to_id)))
        # smote_nc = SMOTENC(categorical_features=feature_indices_array, random_state=0)
        # X_train, y_train = smote_nc.fit_resample(X_train, y_train)
        sm = SMOTE(random_state=42)
        X_train, y_train = sm.fit_resample(X_train, y_train)
    if oversam and undersam:
        smote_enn = SMOTEENN(random_state=0)
        X_train, y_train = smote_enn.fit_resample(X_train, y_train)
    print(Counter(y_train))

    print("Train Classifier")
    dtc = dtc.fit(X_train, y_train, check_input=True)

    if export:
        export_graphviz(dtc, out_file=DATAP + "/temp/trees/sltree_" + configurationname + ".dot", filled=True)
        transform(fitted_ids, configurationname)

    print("Self Accuracy: " + str(dtc.score(X_train, y_train)))

    return selector, dtc
开发者ID:softlang,项目名称:wikionto,代码行数:43,代码来源:decision_tree.py

示例4: test_renn_iter_wrong

# 需要导入模块: from imblearn.under_sampling import RepeatedEditedNearestNeighbours [as 别名]
# 或者: from imblearn.under_sampling.RepeatedEditedNearestNeighbours import fit_resample [as 别名]
def test_renn_iter_wrong():
    max_iter = -1
    renn = RepeatedEditedNearestNeighbours(max_iter=max_iter)
    with pytest.raises(ValueError):
        renn.fit_resample(X, Y)
开发者ID:chkoar,项目名称:imbalanced-learn,代码行数:7,代码来源:test_repeated_edited_nearest_neighbours.py

示例5: test_deprecation_random_state

# 需要导入模块: from imblearn.under_sampling import RepeatedEditedNearestNeighbours [as 别名]
# 或者: from imblearn.under_sampling.RepeatedEditedNearestNeighbours import fit_resample [as 别名]
def test_deprecation_random_state():
    renn = RepeatedEditedNearestNeighbours(random_state=0)
    with warns(
            DeprecationWarning, match="'random_state' is deprecated from 0.4"):
        renn.fit_resample(X, Y)
开发者ID:chkoar,项目名称:imbalanced-learn,代码行数:7,代码来源:test_repeated_edited_nearest_neighbours.py

示例6: test_renn_not_good_object

# 需要导入模块: from imblearn.under_sampling import RepeatedEditedNearestNeighbours [as 别名]
# 或者: from imblearn.under_sampling.RepeatedEditedNearestNeighbours import fit_resample [as 别名]
def test_renn_not_good_object():
    nn = 'rnd'
    renn = RepeatedEditedNearestNeighbours(n_neighbors=nn, kind_sel='mode')
    with pytest.raises(ValueError):
        renn.fit_resample(X, Y)
开发者ID:chkoar,项目名称:imbalanced-learn,代码行数:7,代码来源:test_repeated_edited_nearest_neighbours.py


注:本文中的imblearn.under_sampling.RepeatedEditedNearestNeighbours.fit_resample方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。