本文整理汇总了Python中imblearn.over_sampling.SMOTE.fit_resample方法的典型用法代码示例。如果您正苦于以下问题:Python SMOTE.fit_resample方法的具体用法?Python SMOTE.fit_resample怎么用?Python SMOTE.fit_resample使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imblearn.over_sampling.SMOTE
的用法示例。
在下文中一共展示了SMOTE.fit_resample方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_sample_with_nn_svm
# 需要导入模块: from imblearn.over_sampling import SMOTE [as 别名]
# 或者: from imblearn.over_sampling.SMOTE import fit_resample [as 别名]
def test_sample_with_nn_svm():
kind = 'svm'
nn_k = NearestNeighbors(n_neighbors=6)
svm = SVC(gamma='scale', random_state=RND_SEED)
smote = SMOTE(
random_state=RND_SEED, kind=kind, k_neighbors=nn_k, svm_estimator=svm)
X_resampled, y_resampled = smote.fit_resample(X, Y)
X_gt = np.array([[0.11622591, -0.0317206],
[0.77481731, 0.60935141],
[1.25192108, -0.22367336],
[0.53366841, -0.30312976],
[1.52091956, -0.49283504],
[-0.28162401, -2.10400981],
[0.83680821, 1.72827342],
[0.3084254, 0.33299982],
[0.70472253, -0.73309052],
[0.28893132, -0.38761769],
[1.15514042, 0.0129463],
[0.88407872, 0.35454207],
[1.31301027, -0.92648734],
[-1.11515198, -0.93689695],
[-0.18410027, -0.45194484],
[0.9281014, 0.53085498],
[-0.14374509, 0.27370049],
[-0.41635887, -0.38299653],
[0.08711622, 0.93259929],
[1.70580611, -0.11219234],
[0.47436887, -0.2645749],
[1.07844562, -0.19435291],
[1.44228238, -1.31256615],
[1.25636713, -1.04463226]])
y_gt = np.array([0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,
1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0])
assert_allclose(X_resampled, X_gt, rtol=R_TOL)
assert_array_equal(y_resampled, y_gt)
示例2: test_fit_resample_nn_obj
# 需要导入模块: from imblearn.over_sampling import SMOTE [as 别名]
# 或者: from imblearn.over_sampling.SMOTE import fit_resample [as 别名]
def test_fit_resample_nn_obj():
kind = 'borderline1'
nn_m = NearestNeighbors(n_neighbors=11)
nn_k = NearestNeighbors(n_neighbors=6)
smote = SMOTE(
random_state=RND_SEED, kind=kind, k_neighbors=nn_k, m_neighbors=nn_m)
X_resampled, y_resampled = smote.fit_resample(X, Y)
X_gt = np.array([[0.11622591, -0.0317206], [0.77481731, 0.60935141], [
1.25192108, -0.22367336
], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [
-0.28162401, -2.10400981
], [0.83680821, 1.72827342], [0.3084254, 0.33299982], [
0.70472253, -0.73309052
], [0.28893132, -0.38761769], [1.15514042, 0.0129463], [
0.88407872, 0.35454207
], [1.31301027, -0.92648734], [-1.11515198, -0.93689695], [
-0.18410027, -0.45194484
], [0.9281014, 0.53085498], [-0.14374509, 0.27370049], [
-0.41635887, -0.38299653
], [0.08711622, 0.93259929], [1.70580611, -0.11219234],
[0.3765279, -0.2009615], [0.55276636, -0.10550373],
[0.45413452, -0.08883319], [1.21118683, -0.22817957]])
y_gt = np.array([
0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0
])
assert_allclose(X_resampled, X_gt, rtol=R_TOL)
assert_array_equal(y_resampled, y_gt)
示例3: train_decisiontree_with
# 需要导入模块: from imblearn.over_sampling import SMOTE [as 别名]
# 或者: from imblearn.over_sampling.SMOTE import fit_resample [as 别名]
def train_decisiontree_with(configurationname, train_data, k, score_function, undersam=False, oversam=False,
export=False):
assert k > 0
print("Training with configuration " + configurationname)
X_train, y_train, id_to_a_train = train_data
dtc = DecisionTreeClassifier(random_state=0)
print("Feature Selection")
# selector = SelectFpr(score_function)
selector = SelectKBest(score_function, k=k)
result = selector.fit(X_train, y_train)
X_train = selector.transform(X_train)
fitted_ids = [i for i in result.get_support(indices=True)]
print("Apply Resampling")
print(Counter(y_train))
if undersam and not oversam:
renn = RepeatedEditedNearestNeighbours()
X_train, y_train = renn.fit_resample(X_train, y_train)
if oversam and not undersam:
# feature_indices_array = list(range(len(f_to_id)))
# smote_nc = SMOTENC(categorical_features=feature_indices_array, random_state=0)
# X_train, y_train = smote_nc.fit_resample(X_train, y_train)
sm = SMOTE(random_state=42)
X_train, y_train = sm.fit_resample(X_train, y_train)
if oversam and undersam:
smote_enn = SMOTEENN(random_state=0)
X_train, y_train = smote_enn.fit_resample(X_train, y_train)
print(Counter(y_train))
print("Train Classifier")
dtc = dtc.fit(X_train, y_train, check_input=True)
if export:
export_graphviz(dtc, out_file=DATAP + "/temp/trees/sltree_" + configurationname + ".dot", filled=True)
transform(fitted_ids, configurationname)
print("Self Accuracy: " + str(dtc.score(X_train, y_train)))
return selector, dtc
示例4: test_sample_regular_half
# 需要导入模块: from imblearn.over_sampling import SMOTE [as 别名]
# 或者: from imblearn.over_sampling.SMOTE import fit_resample [as 别名]
def test_sample_regular_half():
sampling_strategy = {0: 9, 1: 12}
smote = SMOTE(
sampling_strategy=sampling_strategy, random_state=RND_SEED)
X_resampled, y_resampled = smote.fit_resample(X, Y)
X_gt = np.array([[0.11622591, -0.0317206], [0.77481731, 0.60935141], [
1.25192108, -0.22367336
], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [
-0.28162401, -2.10400981
], [0.83680821, 1.72827342], [0.3084254, 0.33299982], [
0.70472253, -0.73309052
], [0.28893132, -0.38761769], [1.15514042, 0.0129463], [
0.88407872, 0.35454207
], [1.31301027, -0.92648734], [-1.11515198, -0.93689695], [
-0.18410027, -0.45194484
], [0.9281014, 0.53085498], [-0.14374509, 0.27370049],
[-0.41635887, -0.38299653], [0.08711622, 0.93259929],
[1.70580611, -0.11219234], [0.36784496, -0.1953161]])
y_gt = np.array(
[0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0])
assert_allclose(X_resampled, X_gt, rtol=R_TOL)
assert_array_equal(y_resampled, y_gt)
示例5: test_sample_borderline2
# 需要导入模块: from imblearn.over_sampling import SMOTE [as 别名]
# 或者: from imblearn.over_sampling.SMOTE import fit_resample [as 别名]
def test_sample_borderline2():
kind = 'borderline2'
smote = SMOTE(random_state=RND_SEED, kind=kind)
X_resampled, y_resampled = smote.fit_resample(X, Y)
X_gt = np.array([[0.11622591, -0.0317206], [0.77481731, 0.60935141], [
1.25192108, -0.22367336
], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [
-0.28162401, -2.10400981
], [0.83680821, 1.72827342], [0.3084254, 0.33299982], [
0.70472253, -0.73309052
], [0.28893132, -0.38761769], [1.15514042, 0.0129463], [
0.88407872, 0.35454207
], [1.31301027, -0.92648734], [-1.11515198, -0.93689695], [
-0.18410027, -0.45194484
], [0.9281014, 0.53085498], [-0.14374509, 0.27370049],
[-0.41635887, -0.38299653], [0.08711622, 0.93259929],
[1.70580611, -0.11219234], [0.47436888, -0.2645749],
[1.07844561, -0.19435291], [0.33339622, 0.49870937]])
y_gt = np.array(
[0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0])
assert_allclose(X_resampled, X_gt, rtol=R_TOL)
assert_array_equal(y_resampled, y_gt)
示例6: test_sample_regular_with_nn
# 需要导入模块: from imblearn.over_sampling import SMOTE [as 别名]
# 或者: from imblearn.over_sampling.SMOTE import fit_resample [as 别名]
def test_sample_regular_with_nn():
nn_k = NearestNeighbors(n_neighbors=6)
smote = SMOTE(random_state=RND_SEED, k_neighbors=nn_k)
X_resampled, y_resampled = smote.fit_resample(X, Y)
X_gt = np.array([[0.11622591, -0.0317206], [0.77481731, 0.60935141], [
1.25192108, -0.22367336
], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [
-0.28162401, -2.10400981
], [0.83680821, 1.72827342], [0.3084254, 0.33299982], [
0.70472253, -0.73309052
], [0.28893132, -0.38761769], [1.15514042, 0.0129463], [
0.88407872, 0.35454207
], [1.31301027, -0.92648734], [-1.11515198, -0.93689695], [
-0.18410027, -0.45194484
], [0.9281014, 0.53085498], [-0.14374509, 0.27370049], [
-0.41635887, -0.38299653
], [0.08711622, 0.93259929], [1.70580611, -0.11219234],
[0.29307743, -0.14670439], [0.84976473, -0.15570176],
[0.61319159, -0.11571668], [0.66052536, -0.28246517]])
y_gt = np.array([
0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0
])
assert_allclose(X_resampled, X_gt, rtol=R_TOL)
assert_array_equal(y_resampled, y_gt)
示例7: test_smote_error_passing_estimator
# 需要导入模块: from imblearn.over_sampling import SMOTE [as 别名]
# 或者: from imblearn.over_sampling.SMOTE import fit_resample [as 别名]
def test_smote_error_passing_estimator(smote_params, err_msg):
smote = SMOTE(**smote_params)
with pytest.raises(ValueError, match=err_msg):
smote.fit_resample(X, Y)