本文整理汇总了Python中imblearn.over_sampling.RandomOverSampler.fit_resample方法的典型用法代码示例。如果您正苦于以下问题:Python RandomOverSampler.fit_resample方法的具体用法?Python RandomOverSampler.fit_resample怎么用?Python RandomOverSampler.fit_resample使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类imblearn.over_sampling.RandomOverSampler
的用法示例。
在下文中一共展示了RandomOverSampler.fit_resample方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _fit_resample
# 需要导入模块: from imblearn.over_sampling import RandomOverSampler [as 别名]
# 或者: from imblearn.over_sampling.RandomOverSampler import fit_resample [as 别名]
def _fit_resample(self, X, y):
n_samples = X.shape[0]
# convert y to z_score
y_z = (y - y.mean()) / y.std()
index0 = np.arange(n_samples)
index_negative = index0[y_z > self.negative_thres]
index_positive = index0[y_z <= self.positive_thres]
index_unclassified = [x for x in index0
if x not in index_negative
and x not in index_positive]
y_z[index_negative] = 0
y_z[index_positive] = 1
y_z[index_unclassified] = -1
ros = RandomOverSampler(
sampling_strategy=self.sampling_strategy,
random_state=self.random_state,
ratio=self.ratio)
_, _ = ros.fit_resample(X, y_z)
sample_indices = ros.sample_indices_
print("Before sampler: %s. Total after: %s"
% (Counter(y_z), sample_indices.shape))
self.sample_indices_ = np.array(sample_indices)
if self.return_indices:
return (safe_indexing(X, sample_indices),
safe_indexing(y, sample_indices),
sample_indices)
return (safe_indexing(X, sample_indices),
safe_indexing(y, sample_indices))
示例2: test_multiclass_fit_resample
# 需要导入模块: from imblearn.over_sampling import RandomOverSampler [as 别名]
# 或者: from imblearn.over_sampling.RandomOverSampler import fit_resample [as 别名]
def test_multiclass_fit_resample():
y = Y.copy()
y[5] = 2
y[6] = 2
ros = RandomOverSampler(random_state=RND_SEED)
X_resampled, y_resampled = ros.fit_resample(X, y)
count_y_res = Counter(y_resampled)
assert count_y_res[0] == 5
assert count_y_res[1] == 5
assert count_y_res[2] == 5
示例3: test_random_over_sampling_heterogeneous_data
# 需要导入模块: from imblearn.over_sampling import RandomOverSampler [as 别名]
# 或者: from imblearn.over_sampling.RandomOverSampler import fit_resample [as 别名]
def test_random_over_sampling_heterogeneous_data():
X_hetero = np.array([['xxx', 1, 1.0], ['yyy', 2, 2.0], ['zzz', 3, 3.0]],
dtype=np.object)
y = np.array([0, 0, 1])
ros = RandomOverSampler(random_state=RND_SEED)
X_res, y_res = ros.fit_resample(X_hetero, y)
assert X_res.shape[0] == 4
assert y_res.shape[0] == 4
assert X_res.dtype == object
assert X_res[-1, 0] in X_hetero[:, 0]
示例4: test_ros_fit_resample_half
# 需要导入模块: from imblearn.over_sampling import RandomOverSampler [as 别名]
# 或者: from imblearn.over_sampling.RandomOverSampler import fit_resample [as 别名]
def test_ros_fit_resample_half():
sampling_strategy = {0: 3, 1: 7}
ros = RandomOverSampler(
sampling_strategy=sampling_strategy, random_state=RND_SEED)
X_resampled, y_resampled = ros.fit_resample(X, Y)
X_gt = np.array([[0.04352327, -0.20515826], [0.92923648, 0.76103773], [
0.20792588, 1.49407907
], [0.47104475, 0.44386323], [0.22950086,
0.33367433], [0.15490546, 0.3130677],
[0.09125309, -0.85409574], [0.12372842, 0.6536186],
[0.13347175, 0.12167502], [0.094035, -2.55298982]])
y_gt = np.array([1, 0, 1, 0, 1, 1, 1, 1, 0, 1])
assert_allclose(X_resampled, X_gt)
assert_array_equal(y_resampled, y_gt)
示例5: test_random_over_sampling_return_indices
# 需要导入模块: from imblearn.over_sampling import RandomOverSampler [as 别名]
# 或者: from imblearn.over_sampling.RandomOverSampler import fit_resample [as 别名]
def test_random_over_sampling_return_indices():
ros = RandomOverSampler(return_indices=True, random_state=RND_SEED)
X_resampled, y_resampled, sample_indices = ros.fit_resample(X, Y)
X_gt = np.array([[0.04352327, -0.20515826], [0.92923648, 0.76103773], [
0.20792588, 1.49407907
], [0.47104475, 0.44386323], [0.22950086, 0.33367433], [
0.15490546, 0.3130677
], [0.09125309, -0.85409574], [0.12372842, 0.6536186],
[0.13347175, 0.12167502], [0.094035, -2.55298982],
[0.92923648, 0.76103773], [0.47104475, 0.44386323],
[0.92923648, 0.76103773], [0.47104475, 0.44386323]])
y_gt = np.array([1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0])
assert_allclose(X_resampled, X_gt)
assert_array_equal(y_resampled, y_gt)
assert_array_equal(np.sort(np.unique(sample_indices)), np.arange(len(X)))
示例6: print
# 需要导入模块: from imblearn.over_sampling import RandomOverSampler [as 别名]
# 或者: from imblearn.over_sampling.RandomOverSampler import fit_resample [as 别名]
print(__doc__)
# Generate the dataset
X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9],
n_informative=3, n_redundant=1, flip_y=0,
n_features=20, n_clusters_per_class=1,
n_samples=200, random_state=10)
# Instanciate a PCA object for the sake of easy visualisation
pca = PCA(n_components=2)
# Fit and transform x to visualise inside a 2D feature space
X_vis = pca.fit_transform(X)
# Apply the random over-sampling
ros = RandomOverSampler()
X_resampled, y_resampled = ros.fit_resample(X, y)
X_res_vis = pca.transform(X_resampled)
# Two subplots, unpack the axes array immediately
f, (ax1, ax2) = plt.subplots(1, 2)
c0 = ax1.scatter(X_vis[y == 0, 0], X_vis[y == 0, 1], label="Class #0",
alpha=0.5)
c1 = ax1.scatter(X_vis[y == 1, 0], X_vis[y == 1, 1], label="Class #1",
alpha=0.5)
ax1.set_title('Original set')
ax2.scatter(X_res_vis[y_resampled == 0, 0], X_res_vis[y_resampled == 0, 1],
label="Class #0", alpha=.5)
ax2.scatter(X_res_vis[y_resampled == 1, 0], X_res_vis[y_resampled == 1, 1],
label="Class #1", alpha=.5)
示例7: SMOTE
# 需要导入模块: from imblearn.over_sampling import RandomOverSampler [as 别名]
# 或者: from imblearn.over_sampling.RandomOverSampler import fit_resample [as 别名]
SEED=0xDEADBEEF
y_col = 'add'
X_cols = ['pct_contrib','turnover','VWAP','vol','VWMC','SPTSXComp']
all_cols = X_cols + [y_col]
X = filtered[X_cols]
y = filtered[y_col]
X_test, X_train, y_test, y_train = sk.model_selection.train_test_split(X.values, y.values, test_size=0.2, random_state=SEED)
filtered[all_cols].to_sql('model_inputs', conn, if_exists='replace', index=False)
#oversampler = SMOTE(random_state=SEED)
oversampler = RandomOverSampler(random_state=SEED)
X_train_resample, y_train_resamle = oversampler.fit_resample(X_train, y_train)
print(len(X_train), len(X_test))
#log_clf = LogisticRegression()#
#log_clf = RandomForestClassifier()
#log_clf = xgb.XGBClassifier(max_depth=4, min_child_weight=50, learning_rate=0.01, n_estimators=50, gamma=1)
log_clf = svm.LinearSVC()
##LogisticRegression()
log_clf.fit(X_train_resample, y_train_resamle)
print(log_clf.score(X_train, y_train))
y_pred = log_clf.predict(X_test)
try:
y_pred_prob = log_clf.predict_proba(X_test)
示例8: print
# 需要导入模块: from imblearn.over_sampling import RandomOverSampler [as 别名]
# 或者: from imblearn.over_sampling.RandomOverSampler import fit_resample [as 别名]
X_res, y_res = rus.fit_resample(binary_X, binary_y)
print('Information of the iris data set after making it '
'balanced using a float and an under-sampling method: \n '
'sampling_strategy={} \n y: {}'
.format(sampling_strategy, Counter(y_res)))
plot_pie(y_res)
###############################################################################
# For **over-sampling methods**, it correspond to the ratio
# :math:`\\alpha_{os}` defined by :math:`N_{rm} = \\alpha_{os} \\times N_{M}`
# where :math:`N_{rm}` and :math:`N_{M}` are the number of samples in the
# minority class after resampling and the number of samples in the majority
# class, respectively.
ros = RandomOverSampler(sampling_strategy=sampling_strategy)
X_res, y_res = ros.fit_resample(binary_X, binary_y)
print('Information of the iris data set after making it '
'balanced using a float and an over-sampling method: \n '
'sampling_strategy={} \n y: {}'
.format(sampling_strategy, Counter(y_res)))
plot_pie(y_res)
###############################################################################
# ``sampling_strategy`` has a ``str``
# ...................................
#
# ``sampling_strategy`` can be given as a string which specify the class
# targeted by the resampling. With under- and over-sampling, the number of
# samples will be equalized.
#
# Note that we are using multiple classes from now on.