当前位置: 首页>>代码示例>>Python>>正文


Python SMOTETomek.fit_resample方法代码示例

本文整理汇总了Python中imblearn.combine.SMOTETomek.fit_resample方法的典型用法代码示例。如果您正苦于以下问题:Python SMOTETomek.fit_resample方法的具体用法?Python SMOTETomek.fit_resample怎么用?Python SMOTETomek.fit_resample使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在imblearn.combine.SMOTETomek的用法示例。


在下文中一共展示了SMOTETomek.fit_resample方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_error_wrong_object

# 需要导入模块: from imblearn.combine import SMOTETomek [as 别名]
# 或者: from imblearn.combine.SMOTETomek import fit_resample [as 别名]
def test_error_wrong_object():
    smote = 'rnd'
    tomek = 'rnd'
    smt = SMOTETomek(smote=smote, random_state=RND_SEED)
    with raises(ValueError, match="smote needs to be a SMOTE"):
        smt.fit_resample(X, Y)
    smt = SMOTETomek(tomek=tomek, random_state=RND_SEED)
    with raises(ValueError, match="tomek needs to be a TomekLinks"):
        smt.fit_resample(X, Y)
开发者ID:bodycat,项目名称:imbalanced-learn,代码行数:11,代码来源:test_smote_tomek.py

示例2: test_validate_estimator_default

# 需要导入模块: from imblearn.combine import SMOTETomek [as 别名]
# 或者: from imblearn.combine.SMOTETomek import fit_resample [as 别名]
def test_validate_estimator_default():
    smt = SMOTETomek(random_state=RND_SEED)
    X_resampled, y_resampled = smt.fit_resample(X, Y)
    X_gt = np.array([[0.68481731, 0.51935141], [1.34192108, -0.13367336], [
        0.62366841, -0.21312976
    ], [1.61091956, -0.40283504], [-0.37162401,
                                   -2.19400981], [0.74680821, 1.63827342],
                     [0.61472253, -0.82309052], [0.19893132, -0.47761769],
                     [1.40301027, -0.83648734], [-1.20515198, -1.02689695], [
                         -0.23374509, 0.18370049
                     ], [-0.00288378, 0.84259929], [1.79580611, -0.02219234], [
                         0.38307743, -0.05670439
                     ], [0.70319159, -0.02571667], [0.75052536, -0.19246518]])
    y_gt = np.array([1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0])
    assert_allclose(X_resampled, X_gt, rtol=R_TOL)
    assert_array_equal(y_resampled, y_gt)
开发者ID:bodycat,项目名称:imbalanced-learn,代码行数:18,代码来源:test_smote_tomek.py

示例3: test_sample_regular_half

# 需要导入模块: from imblearn.combine import SMOTETomek [as 别名]
# 或者: from imblearn.combine.SMOTETomek import fit_resample [as 别名]
def test_sample_regular_half():
    sampling_strategy = {0: 9, 1: 12}
    smote = SMOTETomek(
        sampling_strategy=sampling_strategy, random_state=RND_SEED)
    X_resampled, y_resampled = smote.fit_resample(X, Y)
    X_gt = np.array([[0.68481731, 0.51935141], [0.62366841, -0.21312976], [
        1.61091956, -0.40283504
    ], [-0.37162401, -2.19400981], [0.74680821,
                                    1.63827342], [0.61472253, -0.82309052],
                     [0.19893132, -0.47761769], [1.40301027, -0.83648734],
                     [-1.20515198, -1.02689695], [-0.23374509, 0.18370049], [
                         -0.00288378, 0.84259929
                     ], [1.79580611, -0.02219234], [0.45784496, -0.1053161]])
    y_gt = np.array([1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0])
    assert_allclose(X_resampled, X_gt, rtol=R_TOL)
    assert_array_equal(y_resampled, y_gt)
开发者ID:bodycat,项目名称:imbalanced-learn,代码行数:18,代码来源:test_smote_tomek.py

示例4: test_error_wrong_object

# 需要导入模块: from imblearn.combine import SMOTETomek [as 别名]
# 或者: from imblearn.combine.SMOTETomek import fit_resample [as 别名]
def test_error_wrong_object(smote_params, err_msg):
    smt = SMOTETomek(**smote_params)
    with pytest.raises(ValueError, match=err_msg):
        smt.fit_resample(X, Y)
开发者ID:scikit-learn-contrib,项目名称:imbalanced-learn,代码行数:6,代码来源:test_smote_tomek.py

示例5: print

# 需要导入模块: from imblearn.combine import SMOTETomek [as 别名]
# 或者: from imblearn.combine.SMOTETomek import fit_resample [as 别名]
print(__doc__)

# Generate the dataset
X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9],
                           n_informative=3, n_redundant=1, flip_y=0,
                           n_features=20, n_clusters_per_class=1,
                           n_samples=100, random_state=10)

# Instanciate a PCA object for the sake of easy visualisation
pca = PCA(n_components=2)
# Fit and transform x to visualise inside a 2D feature space
X_vis = pca.fit_transform(X)

# Apply SMOTE + Tomek links
sm = SMOTETomek()
X_resampled, y_resampled = sm.fit_resample(X, y)
X_res_vis = pca.transform(X_resampled)

# Two subplots, unpack the axes array immediately
f, (ax1, ax2) = plt.subplots(1, 2)

c0 = ax1.scatter(X_vis[y == 0, 0], X_vis[y == 0, 1], label="Class #0",
                 alpha=0.5)
c1 = ax1.scatter(X_vis[y == 1, 0], X_vis[y == 1, 1], label="Class #1",
                 alpha=0.5)
ax1.set_title('Original set')

ax2.scatter(X_res_vis[y_resampled == 0, 0], X_res_vis[y_resampled == 0, 1],
            label="Class #0", alpha=0.5)
ax2.scatter(X_res_vis[y_resampled == 1, 0], X_res_vis[y_resampled == 1, 1],
            label="Class #1", alpha=0.5)
开发者ID:bodycat,项目名称:imbalanced-learn,代码行数:33,代码来源:plot_smote_tomek.py


注:本文中的imblearn.combine.SMOTETomek.fit_resample方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。