当前位置: 首页>>代码示例>>Python>>正文


Python Data.n_realisations_samples方法代码示例

本文整理汇总了Python中idtxl.data.Data.n_realisations_samples方法的典型用法代码示例。如果您正苦于以下问题:Python Data.n_realisations_samples方法的具体用法?Python Data.n_realisations_samples怎么用?Python Data.n_realisations_samples使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在idtxl.data.Data的用法示例。


在下文中一共展示了Data.n_realisations_samples方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_data_properties

# 需要导入模块: from idtxl.data import Data [as 别名]
# 或者: from idtxl.data.Data import n_realisations_samples [as 别名]
def test_data_properties():

    n = 10
    d = Data(np.arange(n), 's', normalise=False)
    real_time = d.n_realisations_samples()
    assert (real_time == n), 'Realisations in time are not returned correctly.'
    cv = (0, 8)
    real_time = d.n_realisations_samples(current_value=cv)
    assert (real_time == (n - cv[1])), ('Realisations in time are not '
                                        'returned correctly when current value'
                                        ' is set.')
开发者ID:finnconor,项目名称:IDTxl,代码行数:13,代码来源:test_data.py

示例2: test_return_local_values

# 需要导入模块: from idtxl.data import Data [as 别名]
# 或者: from idtxl.data.Data import n_realisations_samples [as 别名]
def test_return_local_values():
    """Test estimation of local values."""
    max_lag = 5
    settings = {
        'cmi_estimator': 'JidtKraskovCMI',
        'local_values': True,  # request calculation of local values
        'n_perm_max_stat': 21,
        'n_perm_min_stat': 21,
        'n_perm_mi': 21,
        'max_lag': max_lag,
        'tau': 1}
    data = Data()
    data.generate_mute_data(100, 3)
    ais = ActiveInformationStorage()
    processes = [1, 2]
    results = ais.analyse_network(settings, data, processes)

    for p in processes:
        lais = results.get_single_process(p, fdr=False)['ais']
        if lais is np.nan:
            continue
        assert type(lais) is np.ndarray, (
            'LAIS estimation did not return an array of values: {0}'.format(
                lais))
        assert lais.shape[0] == data.n_replications, (
            'Wrong dim (no. replications) in LAIS estimate: {0}'.format(
                lais.shape))
        assert lais.shape[1] == data.n_realisations_samples((0, max_lag)), (
            'Wrong dim (no. samples) in LAIS estimate: {0}'.format(lais.shape))
开发者ID:SimonStreicher,项目名称:IDTxl,代码行数:31,代码来源:test_active_information_storage.py

示例3: test_return_local_values

# 需要导入模块: from idtxl.data import Data [as 别名]
# 或者: from idtxl.data.Data import n_realisations_samples [as 别名]
def test_return_local_values():
    """Test estimation of local values."""
    max_lag = 5
    data = Data()
    data.generate_mute_data(500, 5)
    settings = {
        'cmi_estimator': 'JidtKraskovCMI',
        'local_values': True,  # request calculation of local values
        'n_perm_max_stat': 21,
        'n_perm_min_stat': 21,
        'n_perm_max_seq': 21,
        'n_perm_omnibus': 21,
        'max_lag_sources': max_lag,
        'min_lag_sources': 4,
        'max_lag_target': max_lag}
    target = 1
    te = MultivariateTE()
    results = te.analyse_network(settings, data, targets=[target])

    # Test if any sources were inferred. If not, return (this may happen
    # sometimes due to too few samples, however, a higher no. samples is not
    # feasible for a unit test).
    if results.get_single_target(target, fdr=False)['te'] is None:
        return

    lte = results.get_single_target(target, fdr=False)['te']
    n_sources = len(results.get_target_sources(target, fdr=False))
    assert type(lte) is np.ndarray, (
        'LTE estimation did not return an array of values: {0}'.format(lte))
    assert lte.shape[0] == n_sources, (
        'Wrong dim (no. sources) in LTE estimate: {0}'.format(lte.shape))
    assert lte.shape[1] == data.n_realisations_samples((0, max_lag)), (
        'Wrong dim (no. samples) in LTE estimate: {0}'.format(lte.shape))
    assert lte.shape[2] == data.n_replications, (
        'Wrong dim (no. replications) in LTE estimate: {0}'.format(lte.shape))

    # Test for correctnes of single link TE estimation by comparing it to the
    # omnibus TE. In this case (single source), the two should be the same.
    settings['local_values'] = False
    results_avg = te.analyse_network(settings, data, targets=[target])
    if results_avg.get_single_target(target, fdr=False)['te'] is None:
        return
    te_single_link = results_avg.get_single_target(target, fdr=False)['te'][0]
    te_omnibus = results_avg.get_single_target(target, fdr=False)['omnibus_te']
    assert np.isclose(te_single_link, te_omnibus), (
        'Single link TE is not equal to omnibus information transfer.')
    # Compare mean local TE to average TE.
    assert np.isclose(te_single_link, np.mean(lte)), (
        'Single link average TE and mean LTE deviate.')
开发者ID:SimonStreicher,项目名称:IDTxl,代码行数:51,代码来源:test_multivariate_te.py

示例4: test_return_local_values

# 需要导入模块: from idtxl.data import Data [as 别名]
# 或者: from idtxl.data.Data import n_realisations_samples [as 别名]
def test_return_local_values():
    """Test estimation of local values."""
    max_lag = 5
    data = Data()
    data.generate_mute_data(200, 5)
    settings = {
        'cmi_estimator': 'JidtKraskovCMI',
        'local_values': True,  # request calculation of local values
        'n_perm_max_stat': 21,
        'n_perm_min_stat': 21,
        'n_perm_max_seq': 21,
        'n_perm_omnibus': 21,
        'max_lag_sources': max_lag,
        'min_lag_sources': 4,
        'max_lag_target': max_lag}
    target = 2
    te = BivariateTE()
    results_local = te.analyse_network(settings, data, targets=[target])

    lte = results_local.get_single_target(target, fdr=False)['te']
    n_sources = len(results_local.get_target_sources(target, fdr=False))
    assert type(lte) is np.ndarray, (
        'LTE estimation did not return an array of values: {0}'.format(lte))
    assert lte.shape[0] == n_sources, (
        'Wrong dim (no. sources) in LTE estimate: {0}'.format(lte.shape))
    assert lte.shape[1] == data.n_realisations_samples((0, max_lag)), (
        'Wrong dim (no. samples) in LTE estimate: {0}'.format(lte.shape))
    assert lte.shape[2] == data.n_replications, (
        'Wrong dim (no. replications) in LTE estimate: {0}'.format(lte.shape))

    # Test for correctnes of single link TE estimation by comparing it to the
    # TE between single variables and the target. For this test case where we
    # find only one significant past variable per source, the two should be the
    # same. Also compare single link average TE to mean local TE for each
    # link.
    settings['local_values'] = False
    results_avg = te.analyse_network(settings, data, targets=[target])
    te_single_link = results_avg.get_single_target(target, fdr=False)['te']
    te_selected_sources = results_avg.get_single_target(
        target, fdr=False)['selected_sources_te']
    sources_local = results_local.get_target_sources(target, fdr=False)
    sources_avg = results_avg.get_target_sources(target, fdr=False)
    assert np.isclose(te_single_link, te_selected_sources, atol=0.005).all(), (
        'Single link average TE {0} and single source TE {1} deviate.'.format(
                te_single_link, te_selected_sources))
    # Check if average and local values are the same. Make sure target pasts
    # are the same and test each source separately. Inferred source and target
    # may differ between the two calls to analyse_network() due to random data
    # and low number of surrogates used in unit testing. Different no. inferred
    # past variables will also lead to differences in estimates.
    if (results_avg.get_single_target(target, fdr=False).selected_vars_target ==
            results_local.get_single_target(target, fdr=False).selected_vars_target):
        print('Compare average and local values.')
        for s in list(set(sources_avg).intersection(sources_local)):
            i1 = np.where(sources_avg == s)[0][0]
            i2 = np.where(sources_local == s)[0][0]
            assert np.isclose(te_single_link[i1], np.mean(lte[i2, :, :]), atol=0.005), (
                'Single link average TE {0:.6f} and mean LTE {1:.6f} deviate for '
                'source {2}.'.format(
                    te_single_link[i1], np.mean(lte[i2, :, :]), s))
            assert np.isclose(te_single_link[i1], te_selected_sources[i1], atol=0.005), (
                'Single link average TE {0:.6f} and single source TE {1:.6f} '
                'deviate.'.format(te_single_link[i1], te_selected_sources[i1]))
开发者ID:SimonStreicher,项目名称:IDTxl,代码行数:65,代码来源:test_bivariate_te.py

示例5: test_return_local_values

# 需要导入模块: from idtxl.data import Data [as 别名]
# 或者: from idtxl.data.Data import n_realisations_samples [as 别名]
def test_return_local_values():
    """Test estimation of local values."""
    max_lag = 5
    data = Data()
    data.generate_mute_data(500, 5)
    settings = {
        'cmi_estimator': 'JidtKraskovCMI',
        'local_values': True,  # request calculation of local values
        'n_perm_max_stat': 21,
        'n_perm_min_stat': 21,
        'n_perm_max_seq': 21,
        'n_perm_omnibus': 21,
        'max_lag_sources': max_lag,
        'min_lag_sources': 4,
        'max_lag_target': max_lag}
    target = 1
    mi = MultivariateMI()
    results = mi.analyse_network(settings, data, targets=[target])

    # Test if any sources were inferred. If not, return (this may happen
    # sometimes due to too few samples, however, a higher no. samples is not
    # feasible for a unit test).
    if results.get_single_target(target, fdr=False)['mi'] is None:
        return

    lmi = results.get_single_target(target, fdr=False)['mi']
    n_sources = len(results.get_target_sources(target, fdr=False))
    assert type(lmi) is np.ndarray, (
        'LMI estimation did not return an array of values: {0}'.format(
                lmi))
    assert lmi.shape[0] == n_sources, (
        'Wrong dim (no. sources) in LMI estimate: {0}'.format(lmi.shape))
    assert lmi.shape[1] == data.n_realisations_samples((0, max_lag)), (
        'Wrong dim (no. samples) in LMI estimate: {0}'.format(lmi.shape))
    assert lmi.shape[2] == data.n_replications, (
        'Wrong dim (no. replications) in LMI estimate: {0}'.format(lmi.shape))

    # Test for correctnes of single link MI estimation by comparing it to the
    # omnibus MI. In this case (single source), the two should be the same.
    # Skip assertion if more than one source was inferred (this happens
    # sometime due to random data and low no. permutations for statistical
    # testing in unit tests).
    settings['local_values'] = False
    results_avg = mi.analyse_network(settings, data, targets=[target])
    if results_avg.get_single_target(target, fdr=False)['mi'] is None:
        return
    mi_single_link = results_avg.get_single_target(target, fdr=False)['mi']
    mi_omnibus = results_avg.get_single_target(target, fdr=False)['omnibus_mi']
    sources_local = results.get_target_sources(target, fdr=False)
    sources_avg = results_avg.get_target_sources(target, fdr=False)
    if len(sources_avg) == 1:
        print('Compare single link and omnibus MI.')
        assert np.isclose(mi_single_link, mi_omnibus, rtol=0.00005), (
            'Single link MI ({0:.6f}) is not equal to omnibus information '
            '({1:.6f}).'.format(mi_single_link[0], mi_omnibus))
    # Check if average and mean local values are the same. Test each source
    # separately. Inferred sources may differ between the two calls to
    # analyse_network() due to low number of surrogates used in unit testing.
    for s in list(set(sources_avg).intersection(sources_local)):
        print('Compare average and local values.')
        i1 = np.where(sources_avg == s)[0][0]
        i2 = np.where(sources_local == s)[0][0]
        assert np.isclose(mi_single_link[i1], np.mean(lmi[i2, :, :]), rtol=0.00005), (
            'Single link average MI ({0:.6f}) and mean LMI ({1:.6f}) '
            ' deviate.'.format(mi_single_link, np.mean(lmi)))
开发者ID:SimonStreicher,项目名称:IDTxl,代码行数:67,代码来源:test_multivariate_mi.py

示例6: test_return_local_values

# 需要导入模块: from idtxl.data import Data [as 别名]
# 或者: from idtxl.data.Data import n_realisations_samples [as 别名]
def test_return_local_values():
    """Test estimation of local values."""
    max_lag = 5
    data = Data()
    data.generate_mute_data(200, 5)
    settings = {
        'cmi_estimator': 'JidtKraskovCMI',
        'local_values': True,  # request calculation of local values
        'n_perm_max_stat': 21,
        'n_perm_min_stat': 21,
        'n_perm_max_seq': 21,
        'n_perm_omnibus': 21,
        'max_lag_sources': max_lag,
        'min_lag_sources': 4,
        'max_lag_target': max_lag}
    target = 1
    mi = BivariateMI()
    results_local = mi.analyse_network(settings, data, targets=[target])

    lmi = results_local.get_single_target(target, fdr=False)['mi']
    n_sources = len(results_local.get_target_sources(target, fdr=False))
    assert type(lmi) is np.ndarray, (
        'LMI estimation did not return an array of values: {0}'.format(
                lmi))
    assert lmi.shape[0] == n_sources, (
        'Wrong dim (no. sources) in LMI estimate: {0}'.format(
                lmi.shape))
    assert lmi.shape[1] == data.n_realisations_samples((0, max_lag)), (
        'Wrong dim (no. samples) in LMI estimate {0}'.format(
                lmi.shape))
    assert lmi.shape[2] == data.n_replications, (
        'Wrong dim (no. replications) in LMI estimate {0}'.format(
                lmi.shape))

    # Test for correctnes of single link MI estimation by comparing it to the
    # MI between single variables and the target. For this test case where we
    # find only one significant past variable per source, the two should be the
    # same. Also compare single link average MI to mean local MI for each
    # link.
    settings['local_values'] = False
    results_avg = mi.analyse_network(settings, data, targets=[target])
    mi_single_link = results_avg.get_single_target(target, fdr=False)['mi']
    mi_selected_sources = results_avg.get_single_target(
        target, fdr=False)['selected_sources_mi']
    sources_local = results_local.get_target_sources(target, fdr=False)
    sources_avg = results_avg.get_target_sources(target, fdr=False)
    assert np.isclose(mi_single_link, mi_selected_sources, atol=0.005).all(), (
        'Single link average MI {0} and single source MI {1} deviate.'.format(
                mi_single_link, mi_selected_sources))
    # Check if average and local values are the same. Test each source
    # separately. Inferred sources may differ between the two calls to
    # analyse_network() due to low number of surrogates used in unit testing.
    print('Compare average and local values.')
    for s in list(set(sources_avg).intersection(sources_local)):
        i1 = np.where(sources_avg == s)[0][0]
        i2 = np.where(sources_local == s)[0][0]
        assert np.isclose(mi_single_link[i1], np.mean(lmi[i2, :, :]), atol=0.005), (
            'Single link average MI {0:0.6f} and mean LMI {1:0.6f} deviate.'.format(
                mi_single_link[i1], np.mean(lmi[i2, :, :])))
        assert np.isclose(mi_single_link[i1], mi_selected_sources[i1], atol=0.005), (
            'Single link average MI {0:0.6f} and single source MI {1:0.6f} deviate.'.format(
                mi_single_link[i1], mi_selected_sources[i1]))
开发者ID:SimonStreicher,项目名称:IDTxl,代码行数:64,代码来源:test_bivariate_mi.py


注:本文中的idtxl.data.Data.n_realisations_samples方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。