本文整理汇总了Python中hyperspy.components.Gaussian类的典型用法代码示例。如果您正苦于以下问题:Python Gaussian类的具体用法?Python Gaussian怎么用?Python Gaussian使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Gaussian类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: setUp
def setUp(self):
gaussian = Gaussian()
gaussian.A.value = 20
gaussian.sigma.value = 10
gaussian.centre.value = 50
self.spectrum = Signal(gaussian.function(np.arange(0, 100, 0.01)))
self.spectrum.axes_manager[0].scale = 0.01
示例2: setUp
def setUp(self):
s = EDSTEMSpectrum(np.ones([2, 2, 1024]))
energy_axis = s.axes_manager.signal_axes[0]
energy_axis.scale = 1e-2
energy_axis.units = 'keV'
energy_axis.name = "Energy"
s.set_microscope_parameters(beam_energy=200,
live_time=3.1, tilt_stage=0.0,
azimuth_angle=None, elevation_angle=35,
energy_resolution_MnKa=130)
s.metadata.Acquisition_instrument.TEM.Detector.EDS.real_time = 2.5
s.metadata.Acquisition_instrument.TEM.beam_current = 0.05
elements = ['Al', 'Zn']
xray_lines = ['Al_Ka', 'Zn_Ka']
intensities = [300, 500]
for i, xray_line in enumerate(xray_lines):
gauss = Gaussian()
line_energy, FWHM = s._get_line_energy(xray_line, FWHM_MnKa='auto')
gauss.centre.value = line_energy
gauss.A.value = intensities[i]
gauss.sigma.value = FWHM
s.data[:] += gauss.function(energy_axis.axis)
s.set_elements(elements)
s.add_lines(xray_lines)
s.axes_manager[0].scale = 0.5
s.axes_manager[1].scale = 0.5
self.spectrum = s
示例3: test_access_component_by_index
def test_access_component_by_index(self):
m = self.model
g1 = Gaussian()
g2 = Gaussian()
g2.name = "test"
m.extend((g1, g2))
nose.tools.assert_is(m[1], g2)
示例4: test_get_component_wrong
def test_get_component_wrong(self):
m = self.model
g1 = Gaussian()
g2 = Gaussian()
g2.name = "test"
m.extend((g1, g2))
m._get_component(1.2)
示例5: test_get_component_by_component
def test_get_component_by_component(self):
m = self.model
g1 = Gaussian()
g2 = Gaussian()
g2.name = "test"
m.extend((g1, g2))
nose.tools.assert_is(m._get_component(g2), g2)
示例6: test_dof_with_fit
def test_dof_with_fit(self):
m = self.model
g = Gaussian()
g1 = Gaussian()
m.extend((g, g1))
g1.set_parameters_not_free('A')
m.fit()
assert_true(np.equal(m.dof(), 5))
示例7: test_chisq_with_inactive_components
def test_chisq_with_inactive_components(self):
m = self.model
ga = Gaussian()
gin = Gaussian()
m.append(ga)
m.append(gin)
gin.active = False
m.fit()
assert_true(np.allclose(m.chisq(), 7.78966223))
示例8: test_dof_with_p0
def test_dof_with_p0(self):
m = self.model
g = Gaussian()
g1 = Gaussian()
m.extend((g, g1))
g1.set_parameters_not_free('A')
m._set_p0()
m._set_current_degrees_of_freedom()
assert_true(np.equal(m.dof(), 5))
示例9: test_dof_with_inactive_components
def test_dof_with_inactive_components(self):
m = self.model
ga = Gaussian()
gin = Gaussian()
m.append(ga)
m.append(gin)
gin.active = False
m.fit()
assert_true(np.equal(m.dof(), 3))
示例10: test_fit_component
def test_fit_component(self):
m = self.model
axis = self.axis
g1 = Gaussian()
m.append(g1)
m.fit_component(g1, signal_range=(4000, 6000))
assert_true(
np.allclose(
self.g.function(axis),
g1.function(axis),
rtol=self.rtol))
示例11: setUp
def setUp(self):
g = Gaussian()
g.A.value = 10000.0
g.centre.value = 5000.0
g.sigma.value = 500.0
axis = np.arange(10000)
s = Spectrum(g.function(axis))
m = create_model(s)
self.model = m
self.g = g
self.axis = axis
self.rtol = 0.00
示例12: setUp
def setUp(self):
# Create an empty spectrum
s = EDSSEMSpectrum(np.zeros((2, 2, 3, 100)))
energy_axis = s.axes_manager.signal_axes[0]
energy_axis.scale = 0.04
energy_axis.units = 'keV'
energy_axis.name = "Energy"
g = Gaussian()
g.sigma.value = 0.05
g.centre.value = 1.487
s.data[:] = g.function(energy_axis.axis)
s.metadata.Acquisition_instrument.SEM.Detector.EDS.live_time = 3.1
s.metadata.Acquisition_instrument.SEM.beam_energy = 15.0
self.signal = s
示例13: setUp
def setUp(self):
# Create an empty spectrum
s = EELSSpectrumSimulation(np.zeros((3,2,1024)))
energy_axis = s.axes_manager.signal_axes[0]
energy_axis.scale = 0.02
energy_axis.offset = -5
gauss = Gaussian()
gauss.centre.value = 0
gauss.A.value = 5000
gauss.sigma.value = 0.5
gauss2 = Gaussian()
gauss2.sigma.value = 0.5
# Inflexion point 1.5
gauss2.A.value = 5000
gauss2.centre.value = 5
s.data[:] = (gauss.function(energy_axis.axis) +
gauss2.function(energy_axis.axis))
# s.add_poissonian_noise()
self.signal = s
示例14: setUp
def setUp(self):
np.random.seed(1)
axes = np.array([[100 * np.random.random() + np.arange(0., 600, 1)
for i in range(3)] for j in range(4)])
g = Gaussian()
g.A.value = 30000.
g.centre.value = 300.
g.sigma.value = 150.
data = g.function(axes)
s = SpectrumSimulation(data)
s.axes_manager[-1].offset = -150.
s.axes_manager[-1].scale = 0.5
s.add_gaussian_noise(2.0)
m = s.create_model()
g = Gaussian()
g.A.ext_force_positive = True
g.A.ext_bounded = True
m.append(g)
g.active_is_multidimensional = True
for index in m.axes_manager:
m.fit()
self.model = m
示例15: fourier_ratio_deconvolution
def fourier_ratio_deconvolution(self, ll,
fwhm=None,
threshold=None,
extrapolate_lowloss=True,
extrapolate_coreloss=True):
"""Performs Fourier-ratio deconvolution.
The core-loss should have the background removed. To reduce
the noise amplication the result is convolved with a
Gaussian function.
Parameters
----------
ll: EELSSpectrum
The corresponding low-loss (ll) EELSSpectrum.
fwhm : float or None
Full-width half-maximum of the Gaussian function by which
the result of the deconvolution is convolved. It can be
used to select the final SNR and spectral resolution. If
None, the FWHM of the zero-loss peak of the low-loss is
estimated and used.
threshold : {None, float}
Truncation energy to estimate the intensity of the
elastic scattering. If None the threshold is taken as the
first minimum after the ZLP centre.
extrapolate_lowloss, extrapolate_coreloss : bool
If True the signals are extrapolated using a power law,
Notes
-----
For details see: Egerton, R. Electron Energy-Loss
Spectroscopy in the Electron Microscope. Springer-Verlag, 2011.
"""
self._check_signal_dimension_equals_one()
orig_cl_size = self.axes_manager.signal_axes[0].size
if threshold is None:
threshold = ll.estimate_elastic_scattering_threshold()
if extrapolate_coreloss is True:
cl = self.power_law_extrapolation(
window_size=20,
extrapolation_size=100)
else:
cl = self.deepcopy()
if extrapolate_lowloss is True:
ll = ll.power_law_extrapolation(
window_size=100,
extrapolation_size=100)
else:
ll = ll.deepcopy()
ll.hanning_taper()
cl.hanning_taper()
ll_size = ll.axes_manager.signal_axes[0].size
cl_size = self.axes_manager.signal_axes[0].size
# Conservative new size to solve the wrap-around problem
size = ll_size + cl_size - 1
# Increase to the closest multiple of two to enhance the FFT
# performance
size = int(2 ** np.ceil(np.log2(size)))
axis = ll.axes_manager.signal_axes[0]
if fwhm is None:
fwhm = float(ll.get_current_signal().estimate_peak_width()())
print("FWHM = %1.2f" % fwhm)
I0 = ll.estimate_elastic_scattering_intensity(threshold=threshold)
I0 = I0.data
if ll.axes_manager.navigation_size > 0:
I0_shape = list(I0.shape)
I0_shape.insert(axis.index_in_array, 1)
I0 = I0.reshape(I0_shape)
from hyperspy.components import Gaussian
g = Gaussian()
g.sigma.value = fwhm / 2.3548
g.A.value = 1
g.centre.value = 0
zl = g.function(
np.linspace(axis.offset,
axis.offset + axis.scale * (size - 1),
size))
z = np.fft.rfft(zl)
jk = np.fft.rfft(cl.data, n=size, axis=axis.index_in_array)
jl = np.fft.rfft(ll.data, n=size, axis=axis.index_in_array)
zshape = [1, ] * len(cl.data.shape)
zshape[axis.index_in_array] = jk.shape[axis.index_in_array]
cl.data = np.fft.irfft(z.reshape(zshape) * jk / jl,
axis=axis.index_in_array)
cl.data *= I0
cl.crop(-1, None, int(orig_cl_size))
cl.metadata.General.title = (self.metadata.General.title +
' after Fourier-ratio deconvolution')
if cl.tmp_parameters.has_item('filename'):
cl.tmp_parameters.filename = (
#.........这里部分代码省略.........