当前位置: 首页>>代码示例>>Python>>正文


Python Trials.losses方法代码示例

本文整理汇总了Python中hyperopt.Trials.losses方法的典型用法代码示例。如果您正苦于以下问题:Python Trials.losses方法的具体用法?Python Trials.losses怎么用?Python Trials.losses使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在hyperopt.Trials的用法示例。


在下文中一共展示了Trials.losses方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run_all_dl

# 需要导入模块: from hyperopt import Trials [as 别名]
# 或者: from hyperopt.Trials import losses [as 别名]
def run_all_dl(csvfile = saving_fp, 
                space = [hp.quniform('h1', 100, 550, 1), 
                        hp.quniform('h2', 100, 550, 1),
                        hp.quniform('h3', 100, 550, 1),
                        #hp.choice('activation', ["RectifierWithDropout", "TanhWithDropout"]),
                        hp.uniform('hdr1', 0.001, 0.3),
                        hp.uniform('hdr2', 0.001, 0.3),
                        hp.uniform('hdr3', 0.001, 0.3),
                        hp.uniform('rho', 0.9, 0.999), 
                        hp.uniform('epsilon', 1e-10, 1e-4)]):
          # maxout works well with dropout (Goodfellow et al 2013), and rectifier has worked well with image recognition (LeCun et al 1998)
          start_save(csvfile = csvfile)
          trials = Trials()
          print "Deep learning..."
          best = fmin(objective,
                      space = space,
                      algo=tpe.suggest,
                      max_evals=evals,
                      trials=trials)
          print best
          print trials.losses()
          with open('output/dlbest.pkl', 'w') as output:
            pickle.dump(best, output, -1)
          with open('output/dltrials.pkl', 'w') as output:
            pickle.dump(trials, output, -1)
开发者ID:JohnNay,项目名称:forecastVeg,代码行数:27,代码来源:3_h2o_deeplearning.py

示例2: main

# 需要导入模块: from hyperopt import Trials [as 别名]
# 或者: from hyperopt.Trials import losses [as 别名]
def main():

    usage = "%prog"
    parser = OptionParser(usage=usage)
    parser.add_option('-o', dest='output_dirname', default='bayes_opt_rnn_chars',
                      help='Output directory name')
    parser.add_option('--reuse', dest='reuse', action="store_true", default=False,
                      help='Use reusable holdout; default=%default')

    (options, args) = parser.parse_args()

    global output_dirname, output_filename, reuse, search_alpha, space
    reuse = options.reuse
    output_dirname = options.output_dirname

    if reuse:
        output_dirname += '_reuse'

    output_filename = fh.make_filename(defines.exp_dir, fh.get_basename_wo_ext(output_dirname), 'log')

    with codecs.open(output_filename, 'w') as output_file:
        output_file.write(output_dirname + '\n')
        #output_file.write('reuse = ' + str(reuse) + '\n')

    trials = Trials()
    best = fmin(call_experiment,
                space=space,
                algo=tpe.suggest,
                max_evals=100,
                trials=trials)

    print space_eval(space, best)
    print trials.losses()
开发者ID:dallascard,项目名称:guac,代码行数:35,代码来源:run_with_bayes_opt_chars.py

示例3: main

# 需要导入模块: from hyperopt import Trials [as 别名]
# 或者: from hyperopt.Trials import losses [as 别名]
def main():

    usage = "%prog text.json labels.csv feature_dir output_dir"
    parser = OptionParser(usage=usage)
    parser.add_option('-m', dest='max_iter', default=4,
                      help='Maximum iterations of Bayesian optimization; default=%default')

    (options, args) = parser.parse_args()
    max_iter = int(options.max_iter)

    global data_filename, label_filename, feature_dir, output_dir, log_filename

    data_filename = args[0]
    label_filename = args[1]
    feature_dir = args[2]
    output_dir = args[3]

    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    log_filename = os.path.join(output_dir, 'log.txt')

    with open(log_filename, 'w') as logfile:
        logfile.write(','.join([data_filename, label_filename, feature_dir, output_dir]))

    trials = Trials()
    best = fmin(call_experiment,
                space=space,
                algo=tpe.suggest,
                max_evals=max_iter,
                trials=trials)

    print space_eval(space, best)
    print trials.losses()
开发者ID:benbo,项目名称:botc,代码行数:35,代码来源:run.py

示例4: work

# 需要导入模块: from hyperopt import Trials [as 别名]
# 或者: from hyperopt.Trials import losses [as 别名]
    def work(self):
        bandit = self.bandit
        assert bandit.name is not None
        algo = partial(
            tree.suggest,
            # XXX (begin)
            n_trees=10,
            logprior_strength=1.0,
            # XXX (end)
                )
        LEN = self.LEN.get(bandit.name, 75)

        trials = Trials()
        fmin(fn=passthrough,
            space=self.bandit.expr,
            trials=trials,
            algo=algo,
            max_evals=LEN)
        assert len(trials) == LEN

        if 1:
            rtrials = Trials()
            fmin(fn=passthrough,
                space=self.bandit.expr,
                trials=rtrials,
                algo=rand.suggest,
                max_evals=LEN)
            print 'RANDOM BEST 6:', list(sorted(rtrials.losses()))[:6]

        if 0:
            plt.subplot(2, 2, 1)
            plt.scatter(range(LEN), trials.losses())
            plt.title('TPE losses')
            plt.subplot(2, 2, 2)
            plt.scatter(range(LEN), ([s['x'] for s in trials.specs]))
            plt.title('TPE x')
            plt.subplot(2, 2, 3)
            plt.title('RND losses')
            plt.scatter(range(LEN), rtrials.losses())
            plt.subplot(2, 2, 4)
            plt.title('RND x')
            plt.scatter(range(LEN), ([s['x'] for s in rtrials.specs]))
            plt.show()
        if 0:
            plt.hist(
                    [t['x'] for t in self.experiment.trials],
                    bins=20)

        #print trials.losses()
        print 'OPT BEST 6:', list(sorted(trials.losses()))[:6]
        #logx = np.log([s['x'] for s in trials.specs])
        #print 'TPE MEAN', np.mean(logx)
        #print 'TPE STD ', np.std(logx)
        thresh = self.thresholds[bandit.name]
        print 'Thresh', thresh
        assert min(trials.losses()) < thresh
开发者ID:dwf,项目名称:hyperopt,代码行数:58,代码来源:test_tree.py

示例5: main

# 需要导入模块: from hyperopt import Trials [as 别名]
# 或者: from hyperopt.Trials import losses [as 别名]
def main():
    set_globals()
    trials = Trials()
    best = fmin(call_experiment,
                space=space,
                algo=tpe.suggest,
                max_evals=max_iter,
                trials=trials)
    
    print space_eval(space, best)
    print "losses:", [-l for l in trials.losses()]
    print('the best loss: ', max([-l for l in trials.losses()]))
    print("number of trials: " + str(len(trials.trials)))
开发者ID:anukat2015,项目名称:ARKcat,代码行数:15,代码来源:optimize_full_ensemble.py

示例6: optimize

# 需要导入模块: from hyperopt import Trials [as 别名]
# 或者: from hyperopt.Trials import losses [as 别名]
def optimize(obj_function, inputs, key_file, space, max_eval):

    trials = Trials()
    f = partial(obj_function, inputs, key_file)
    best = fmin(f, space=space, algo=tpe.suggest, max_evals=max_eval,
                trials=trials)
    LOGGER.info("{}\t{}".format(best, 1 - min(trials.losses())))
开发者ID:osmanbaskaya,项目名称:wsid,代码行数:9,代码来源:__init__.py

示例7: run

# 需要导入模块: from hyperopt import Trials [as 别名]
# 或者: from hyperopt.Trials import losses [as 别名]
 def run(self):
     start = time.time()
     trials = Trials()
     best = fmin(self._obj, self.model_param_space._build_space(), tpe.suggest, self.max_evals, trials)
     best_params = space_eval(self.model_param_space._build_space(), best)
     best_params = self.model_param_space._convert_int_param(best_params)
     trial_rmses = np.asarray(trials.losses(), dtype=float)
     best_ind = np.argmin(trial_rmses)
     best_rmse_mean = trial_rmses[best_ind]
     best_rmse_std = trials.trial_attachments(trials.trials[best_ind])["std"]
     self.logger.info("-"*50)
     self.logger.info("Best RMSE")
     self.logger.info("      Mean: %.6f"%best_rmse_mean)
     self.logger.info("      std: %.6f"%best_rmse_std)
     self.logger.info("Best param")
     self.task._print_param_dict(best_params)
     end = time.time()
     _sec = end - start
     _min = int(_sec/60.)
     self.logger.info("Time")
     if _min > 0:
         self.logger.info("      %d mins"%_min)
     else:
         self.logger.info("      %d secs"%_sec)
     self.logger.info("-"*50)
开发者ID:yitang,项目名称:Kaggle_HomeDepot,代码行数:27,代码来源:task.py

示例8: optimize_model_pytorch

# 需要导入模块: from hyperopt import Trials [as 别名]
# 或者: from hyperopt.Trials import losses [as 别名]
def optimize_model_pytorch(device, args, train_GWAS, train_y, test_GWAS, test_y, out_folder ="", startupJobs = 40, maxevals = 200, noOut = False):
    global numTrials_pytorch
    numTrials_pytorch= 0

    trials = Trials()
    trial_wrapper = partial(trial_pytorch,device = device, args = args , train_GWAS = train_GWAS, train_y = train_y , test_GWAS = test_GWAS , test_y = test_y)

    best_pars = fmin(trial_wrapper, parameter_space_pytorch(), algo=partial(tpe.suggest, n_startup_jobs=(startupJobs) ), max_evals=maxevals, trials=trials)

    # Print the selected 'best' hyperparameters.
    if noOut == False: print('\nBest hyperparameter settings: ',space_eval(parameter_space_pytorch(), best_pars),'\n')

    # loops through the 1st entry in the dict that holds all the lookup keys
    regression = True

    for p in trials.trials[0]['misc']['idxs']: plot_optimization_pytorch(trials, p, regression, out_folder = out_folder) 

    best_pars = space_eval(parameter_space_pytorch(), best_pars) # this turns the indices into the actual params into the valid aprameter space
    
    # override the epochs with the early start
    lowestLossIndex = np.argmin(trials.losses())
    trials.trial_attachments(trials.trials[lowestLossIndex])['highestAcc_epoch']
    best_pars['earlyStopEpochs'] = trials.trial_attachments(trials.trials[lowestLossIndex])['highestAcc_epoch']
    best_pars['earlyStopEpochs'] += 1 # as epochs are 0 based otherwise...
    best_pars['epochs'] = best_pars['earlyStopEpochs'] 
    if best_pars['epochs'] <= 0 : best_pars['epochs'] = 1 # we dont want a network without any training, as that will cause a problem for deep dreaming
    return(best_pars)
开发者ID:mkelcb,项目名称:knet,代码行数:29,代码来源:knet_manager_pytorch.py

示例9: work

# 需要导入模块: from hyperopt import Trials [as 别名]
# 或者: from hyperopt.Trials import losses [as 别名]
        def work(self):
            bandit = self.bandit
            random_algo = Random(bandit)
            # build an experiment of 10 trials
            trials = Trials()
            exp = Experiment(trials, random_algo)
            #print random_algo.s_specs_idxs_vals
            exp.run(10)
            ids = trials.tids
            assert len(ids) == 10
            tpe_algo = TreeParzenEstimator(bandit)
            #print pyll.as_apply(tpe_algo.post_idxs)
            #print pyll.as_apply(tpe_algo.post_vals)
            argmemo = {}

            print trials.miscs
            idxs, vals = miscs_to_idxs_vals(trials.miscs)
            argmemo[tpe_algo.observed['idxs']] = idxs
            argmemo[tpe_algo.observed['vals']] = vals
            argmemo[tpe_algo.observed_loss['idxs']] = trials.tids
            argmemo[tpe_algo.observed_loss['vals']] = trials.losses()
            stuff = pyll.rec_eval([tpe_algo.post_below['idxs'],
                        tpe_algo.post_below['vals']],
                        memo=argmemo)
            print stuff
开发者ID:ardila,项目名称:hyperopt,代码行数:27,代码来源:test_tpe.py

示例10: notest_opt_qn_normal

# 需要导入模块: from hyperopt import Trials [as 别名]
# 或者: from hyperopt.Trials import losses [as 别名]
def notest_opt_qn_normal(f=hp_normal):
    bandit = Bandit(
            {'loss': scope.sum([f('v%i' % ii, 0, 1)
                for ii in range(25)]) ** 2},
            loss_target=0)
    algo = TreeParzenEstimator(bandit,
            prior_weight=.5,
            n_startup_jobs=0,
            n_EI_candidates=1,
            gamma=0.15)
    trials = Trials()
    experiment = Experiment(trials, algo, async=False)
    experiment.max_queue_len = 1
    experiment.run(40)
    print 'sorted losses:', list(sorted(trials.losses()))

    idxs, vals = miscs_to_idxs_vals(trials.miscs)

    if 1:
        import hyperopt.plotting
        hyperopt.plotting.main_plot_vars(trials, bandit, do_show=1)
    else:
        import matplotlib.pyplot as plt
        begin = [v[:10] for k, v in vals.items()]
        end = [v[-10:] for k, v in vals.items()]
        plt.subplot(2, 1, 1)
        plt.title('before')
        plt.hist(np.asarray(begin).flatten())
        plt.subplot(2, 1, 2)
        plt.title('after')
        plt.hist(np.asarray(end).flatten())
        plt.show()
开发者ID:10sun,项目名称:hyperopt,代码行数:34,代码来源:test_tpe.py

示例11: run_all_gbm

# 需要导入模块: from hyperopt import Trials [as 别名]
# 或者: from hyperopt.Trials import losses [as 别名]
def run_all_gbm(csvfile = saving_fp, 
                space = [hp.quniform('ntrees', 200, 750, 1), hp.quniform('max_depth', 5, 15, 1), hp.uniform('learn_rate', 0.03, 0.35)]):
  # Search space is a stochastic argument-sampling program:
  start_save(csvfile = csvfile)
  trials = Trials()
  best = fmin(objective,
      space = space,
      algo=tpe.suggest,
      max_evals=evals,
      trials=trials)
  print best
  # from hyperopt import space_eval
  # print space_eval(space, best)
  # trials.trials # list of dictionaries representing everything about the search
  # trials.results # list of dictionaries returned by 'objective' during the search
  print trials.losses() # list of losses (float for each 'ok' trial)
  # trials.statuses() # list of status strings
  with open('output/gbmbest.pkl', 'w') as output:
    pickle.dump(best, output, -1)
  with open('output/gbmtrials.pkl', 'w') as output:
    pickle.dump(trials, output, -1)
开发者ID:JohnNay,项目名称:forecastVeg,代码行数:23,代码来源:3_h2o_gbm.py

示例12: work

# 需要导入模块: from hyperopt import Trials [as 别名]
# 或者: from hyperopt.Trials import losses [as 别名]
    def work(self):
        bandit = self.bandit
        assert bandit.name is not None
        algo = partial(anneal.suggest)
        LEN = self.LEN.get(bandit.name, 50)

        trials = Trials()
        fmin(fn=passthrough, space=self.bandit.expr, trials=trials, algo=algo, max_evals=LEN)
        assert len(trials) == LEN

        if 1:
            rtrials = Trials()
            fmin(fn=passthrough, space=self.bandit.expr, trials=rtrials, algo=rand.suggest, max_evals=LEN)
            print("RANDOM BEST 6:", list(sorted(rtrials.losses()))[:6])

        if 0:
            plt.subplot(2, 2, 1)
            plt.scatter(list(range(LEN)), trials.losses())
            plt.title("TPE losses")
            plt.subplot(2, 2, 2)
            plt.scatter(list(range(LEN)), ([s["x"] for s in trials.specs]))
            plt.title("TPE x")
            plt.subplot(2, 2, 3)
            plt.title("RND losses")
            plt.scatter(list(range(LEN)), rtrials.losses())
            plt.subplot(2, 2, 4)
            plt.title("RND x")
            plt.scatter(list(range(LEN)), ([s["x"] for s in rtrials.specs]))
            plt.show()
        if 0:
            plt.hist([t["x"] for t in self.experiment.trials], bins=20)

        # print trials.losses()
        print("ANNEAL BEST 6:", list(sorted(trials.losses()))[:6])
        # logx = np.log([s['x'] for s in trials.specs])
        # print 'TPE MEAN', np.mean(logx)
        # print 'TPE STD ', np.std(logx)
        thresh = self.thresholds[bandit.name]
        print("Thresh", thresh)
        assert min(trials.losses()) < thresh
开发者ID:hyperopt,项目名称:hyperopt,代码行数:42,代码来源:test_anneal.py

示例13: hyperopt_search

# 需要导入模块: from hyperopt import Trials [as 别名]
# 或者: from hyperopt.Trials import losses [as 别名]
    def hyperopt_search(self, parallel=False):  # TODO: implement parallel search with MongoTrials
        def objective(kwargs):
            start = dt.now()
            self.get_hyperparam_string(**kwargs)
            self.fit_vw()
            self.validate_vw()
            loss = self.validation_metric_vw()

            finish = dt.now()
            elapsed = finish - start
            self.logger.info("evaluation time for this step: %s" % str(elapsed))

            # clean up
            subprocess.call(shlex.split('rm %s %s' % (self.train_model, self.holdout_pred)))

            to_return = {'status': STATUS_OK,
                         'loss': loss,  # TODO: include also train loss tracking in order to prevent overfitting
                         'eval_time': elapsed,
                         'train_command': self.train_command
                        }
            return to_return

        trials = Trials()
        if self.searcher == 'tpe':
            algo = tpe.suggest
        elif self.searcher == 'rand':
            algo = rand.suggest

        logging.debug("starting hypersearch...")
        best_params = fmin(objective, space=self.space, trials=trials, algo=algo, max_evals=self.max_evals)
        self.logger.debug("the best hyperopt parameters: %s" % str(best_params))

        best_configuration = trials.results[np.argmin(trials.losses())]['train_command']
        best_loss = trials.results[np.argmin(trials.losses())]['loss']
        self.logger.info("\n\nA FULL TRAINING COMMAND WITH THE BEST HYPERPARAMETERS: \n%s" % best_configuration)
        self.logger.info("\n\nTHE BEST LOSS VALUE: \n%s" % best_loss)

        return best_configuration, best_loss
开发者ID:fedorajzf,项目名称:vowpal_wabbit,代码行数:40,代码来源:vw-hyperopt.py

示例14: TunningParamter

# 需要导入模块: from hyperopt import Trials [as 别名]
# 或者: from hyperopt.Trials import losses [as 别名]
def TunningParamter(param,data,features,feature,source_name,real_value,int_boolean):
    data = data[~pd.isnull(all_data[feature])]
    print data.shape
    ISOTIMEFORMAT='%Y-%m-%d %X'
    start = time.strftime(ISOTIMEFORMAT, time.localtime())
    trials = Trials()
    objective = lambda p : trainModel(p, data, features, feature,source_name,real_value,int_boolean)
    
    best_parameters = fmin(objective, param, algo =tpe.suggest,max_evals=param['max_evals'],trials= trials)
    #now we need to get best_param
    trials_loss = np.asanyarray(trials.losses(),dtype=float)
    best_loss = min(trials_loss)
    ind = np.where(trials_loss==best_loss)[0][0]
    best_loss_std = trials.trial_attachments(trials.trials[ind])['std']
    end = time.strftime(ISOTIMEFORMAT,time.localtime())
    dumpMessage(best_parameters, best_loss, best_loss_std,param['task'],source_name,start,end)
开发者ID:wawltor,项目名称:Preudential,代码行数:18,代码来源:analysisFeature.py

示例15: work

# 需要导入模块: from hyperopt import Trials [as 别名]
# 或者: from hyperopt.Trials import losses [as 别名]
    def work(self):

        bandit = self.bandit
        assert bandit.name is not None
        algo = partial(tpe.suggest,
                gamma=self.gammas.get(bandit.name,
                    tpe._default_gamma),
                prior_weight=self.prior_weights.get(bandit.name,
                    tpe._default_prior_weight),
                n_EI_candidates=self.n_EIs.get(bandit.name,
                    tpe._default_n_EI_candidates),
                )
        LEN = self.LEN.get(bandit.name, 50)

        trials = Trials()
        fmin(passthrough,
            space=bandit.expr,
            algo=algo,
            trials=trials,
            max_evals=LEN,
            rstate=np.random.RandomState(123),
            catch_eval_exceptions=False)
        assert len(trials) == LEN

        if 1:
            rtrials = Trials()
            fmin(passthrough,
                space=bandit.expr,
                algo=rand.suggest,
                trials=rtrials,
                max_evals=LEN)
            print 'RANDOM MINS', list(sorted(rtrials.losses()))[:6]
            #logx = np.log([s['x'] for s in rtrials.specs])
            #print 'RND MEAN', np.mean(logx)
            #print 'RND STD ', np.std(logx)

        if 0:
            plt.subplot(2, 2, 1)
            plt.scatter(range(LEN), trials.losses())
            plt.title('TPE losses')
            plt.subplot(2, 2, 2)
            plt.scatter(range(LEN), ([s['x'] for s in trials.specs]))
            plt.title('TPE x')
            plt.subplot(2, 2, 3)
            plt.title('RND losses')
            plt.scatter(range(LEN), rtrials.losses())
            plt.subplot(2, 2, 4)
            plt.title('RND x')
            plt.scatter(range(LEN), ([s['x'] for s in rtrials.specs]))
            plt.show()
        if 0:
            plt.hist(
                    [t['x'] for t in self.experiment.trials],
                    bins=20)

        #print trials.losses()
        print 'TPE    MINS', list(sorted(trials.losses()))[:6]
        #logx = np.log([s['x'] for s in trials.specs])
        #print 'TPE MEAN', np.mean(logx)
        #print 'TPE STD ', np.std(logx)
        thresh = self.thresholds[bandit.name]
        print 'Thresh', thresh
        assert min(trials.losses()) < thresh
开发者ID:AshBT,项目名称:hyperopt,代码行数:65,代码来源:test_tpe.py


注:本文中的hyperopt.Trials.losses方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。