本文整理汇总了Python中hyperion.model.Model.add_spherical_source方法的典型用法代码示例。如果您正苦于以下问题:Python Model.add_spherical_source方法的具体用法?Python Model.add_spherical_source怎么用?Python Model.add_spherical_source使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类hyperion.model.Model
的用法示例。
在下文中一共展示了Model.add_spherical_source方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: Model
# 需要导入模块: from hyperion.model import Model [as 别名]
# 或者: from hyperion.model.Model import add_spherical_source [as 别名]
# Model
m = Model()
dist = 20000 * au
x = np.linspace(-dist, dist, 101)
y = np.linspace(-dist, dist, 101)
z = np.linspace(-dist, dist, 101)
m.set_cartesian_grid(x,y,z)
# Dust
d = SphericalDust('kmh.hdf5')
d.set_sublimation_temperature('fast', temperature=1600.)
m.add_density_grid(np.ones((100,100,100)) * 1.e-18,'kmh.hdf5')
# Alpha centauri
sourceA = m.add_spherical_source()
sourceA.luminosity = 1.519 * lsun
sourceA.radius = 1.227 * rsun
sourceA.temperature = 5790.
sourceA.position = (0., 0., 0.)
# Beta centauri
sourceB = m.add_spherical_source()
sourceB.luminosity = 0.5 * lsun
sourceB.radius = 0.865 * rsun
sourceB.temperature = 5260.
sourceB.position = (-11.2 * au, 0., 0.)
# Proxima centauri
sourceP = m.add_spherical_source()
sourceP.luminosity = 0.0017 * lsun
示例2: setup_model_shell
# 需要导入模块: from hyperion.model import Model [as 别名]
# 或者: from hyperion.model.Model import add_spherical_source [as 别名]
#.........这里部分代码省略.........
rho_dum = np.log10(rho_env_copy[(rc > 1.1*R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == False),ithetac])
rc_dum = np.log10(rc[(rc > 1.1*R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == False)])
rc_dum_nan = np.log10(rc[(rc > 1.1*R_inf) & (np.isnan(rho_env_copy[:,ithetac]) == True)])
for i in range(0, len(rc_dum_nan)):
rho_extrapol = poly(rc_dum, rho_dum, rc_dum_nan[i])
rho_env_copy[(np.log10(rc) == rc_dum_nan[i]),ithetac] = 10**rho_extrapol
rho_env2d = rho_env_copy
rho_env = np.empty((nx,ny,nz))
for i in range(0, nz):
rho_env[:,:,i] = rho_env2d
# create the array of density of disk and the whole structure
#
rho = np.zeros([len(rc),len(thetac),len(phic)])
# The function for calculating the normalization of disk using the total disk mass
#
for ir in range(0,len(rc)):
for itheta in range(0,len(thetac)):
for iphi in range(0,len(phic)):
if rc[ir] > rin_shell:
# Envelope profile
rho[ir,itheta,iphi] = rho_env[ir,itheta,iphi]
else:
rho[ir,itheta,iphi] = 1e-25
rho_env = rho_env + 1e-40
rho = rho + 1e-40
# Call function to plot the density
plot_density(rho, rc, thetac,'/Users/yaolun/bhr71/hyperion/', plotname='shell')
# Insert the calculated grid and dust density profile into hyperion
m.set_spherical_polar_grid(ri, thetai, phii)
m.add_density_grid(rho.T, outdir+'oh5.hdf5') # numpy read the array in reverse order
# Define the luminsoity source
source = m.add_spherical_source()
source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s]
source.radius = rstar # [cm]
source.temperature = tstar # [K]
source.position = (0., 0., 0.)
print 'L_center = % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS)
# Setting up the wavelength for monochromatic radiative transfer
lambda0 = 0.1
lambda1 = 2.0
lambda2 = 50.0
lambda3 = 95.0
lambda4 = 200.0
lambda5 = 314.0
lambda6 = 670.0
n01 = 10.0
n12 = 20.0
n23 = (lambda3-lambda2)/0.02
n34 = (lambda4-lambda3)/0.03
n45 = (lambda5-lambda4)/0.1
n56 = (lambda6-lambda5)/0.1
lam01 = lambda0 * (lambda1/lambda0)**(np.arange(n01)/n01)
lam12 = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12)
lam23 = lambda2 * (lambda3/lambda2)**(np.arange(n23)/n23)
lam34 = lambda3 * (lambda4/lambda3)**(np.arange(n34)/n34)
lam45 = lambda4 * (lambda5/lambda4)**(np.arange(n45)/n45)
lam56 = lambda5 * (lambda6/lambda5)**(np.arange(n56+1)/n56)
lam = np.concatenate([lam01,lam12,lam23,lam34,lam45,lam56])
nlam = len(lam)
# Create camera wavelength points
示例3:
# 需要导入模块: from hyperion.model import Model [as 别名]
# 或者: from hyperion.model.Model import add_spherical_source [as 别名]
density[in_box] = rho_0
# Set up sphere 1
in_sphere_1 = (x - 10 * au) ** 2 + (y - 15 * au) ** 2 + (z - 20 * au) ** 2 < r_1 ** 2
density[in_sphere_1] = rho_1
# Set up sphere 2
in_sphere_2 = (x - 26.666667 * au) ** 2 + (y - 31.666667 * au) ** 2 + (z - 28.333333 * au) ** 2 < r_2 ** 2
density[in_sphere_2] = rho_2
# Remove dust close to source
in_rsub = np.sqrt(x * x + y * y + z * z) < RSUB
density[in_rsub] = 0.
m.add_density_grid(density, d)
# m.set_propagation_check_frequency(1.0)
# Set up illuminating source:
s = m.add_spherical_source()
s.radius = 6.6 * rsun
s.temperature = 33000.
s.luminosity = 4 * pi * s.radius ** 2 * sigma * s.temperature ** 4
# Set up number of photons
m.set_n_photons(initial=NPHOTONS, imaging=0)
# Write out and run
m.write(os.path.join('models', 'bm2_eff_vor_temperature.rtin'), overwrite=True)
m.run(os.path.join('models', 'bm2_eff_vor_temperature.rtout'), mpi=True, overwrite=True)
示例4: setup_model
# 需要导入模块: from hyperion.model import Model [as 别名]
# 或者: from hyperion.model.Model import add_spherical_source [as 别名]
#.........这里部分代码省略.........
R_disk_min = fix_params['R_min']*AU
R_env_min = fix_params['R_min']*AU
# Make the Coordinates
#
ri = rin * (rout/rin)**(np.arange(nx+1).astype(dtype='float')/float(nx))
ri = np.hstack((0.0, ri))
thetai = PI*np.arange(ny+1).astype(dtype='float')/float(ny)
phii = PI*2.0*np.arange(nz+1).astype(dtype='float')/float(nz)
# Keep the constant cell size in r-direction at large radii
#
if max_rCell != None:
ri_cellsize = ri[1:-1]-ri[0:-2]
ind = np.where(ri_cellsize/AU > max_rCell)[0][0] # The largest cell size is 100 AU
ri = np.hstack((ri[0:ind],
ri[ind]+np.arange(np.ceil((rout-ri[ind])/max_rCell/AU))*max_rCell*AU))
nxx = nx
nx = len(ri)-1
# Assign the coordinates of the center of cell as its coordinates.
#
rc = 0.5*( ri[0:nx] + ri[1:nx+1] )
thetac = 0.5*( thetai[0:ny] + thetai[1:ny+1] )
phic = 0.5*( phii[0:nz] + phii[1:nz+1] )
# for non-TSC model
if ulrich:
import hyperion as hp
from hyperion.model import AnalyticalYSOModel
non_tsc = AnalyticalYSOModel()
# Define the luminsoity source
nt_source = non_tsc.add_spherical_source()
nt_source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s]
nt_source.radius = rstar # [cm]
nt_source.temperature = tstar # [K]
nt_source.position = (0., 0., 0.)
nt_source.mass = mstar
# Envelope structure
#
nt_envelope = non_tsc.add_ulrich_envelope()
nt_envelope.mdot = M_env_dot # Infall rate
nt_envelope.rmin = rin # Inner radius
nt_envelope.rc = R_cen # Centrifugal radius
nt_envelope.rmax = R_env_max # Outer radius
nt_envelope.star = nt_source
nt_grid = hp.grid.SphericalPolarGrid(ri, thetai, phii)
rho_env_ulrich = nt_envelope.density(nt_grid).T
rho_env_ulrich2d = np.sum(rho_env_ulrich**2, axis=2)/np.sum(rho_env_ulrich, axis=2)
# Make the dust density model
#
# total mass counter
total_mass = 0
# normalization constant for cavity shape
if theta_cav != 0:
# using R = 10000 AU as the reference point
c0 = (10000.*AU)**(-0.5)*\
np.sqrt(1/np.sin(np.radians(theta_cav))**3-1/np.sin(np.radians(theta_cav)))
else:
c0 = 0
示例5: run_thermal_hyperion
# 需要导入模块: from hyperion.model import Model [as 别名]
# 或者: from hyperion.model.Model import add_spherical_source [as 别名]
def run_thermal_hyperion(self, nphot=1e6, mrw=False, pda=False, \
niterations=20, percentile=99., absolute=2.0, relative=1.02, \
max_interactions=1e8, mpi=False, nprocesses=None):
d = []
for i in range(len(self.grid.dust)):
d.append(IsotropicDust( \
self.grid.dust[i].nu[::-1].astype(numpy.float64), \
self.grid.dust[i].albedo[::-1].astype(numpy.float64), \
self.grid.dust[i].kext[::-1].astype(numpy.float64)))
m = HypModel()
if (self.grid.coordsystem == "cartesian"):
m.set_cartesian_grid(self.grid.w1*AU, self.grid.w2*AU, \
self.grid.w3*AU)
elif (self.grid.coordsystem == "cylindrical"):
m.set_cylindrical_polar_grid(self.grid.w1*AU, self.grid.w3*AU, \
self.grid.w2)
elif (self.grid.coordsystem == "spherical"):
m.set_spherical_polar_grid(self.grid.w1*AU, self.grid.w2, \
self.grid.w3)
for i in range(len(self.grid.density)):
if (self.grid.coordsystem == "cartesian"):
m.add_density_grid(numpy.transpose(self.grid.density[i], \
axes=(2,1,0)), d[i])
if (self.grid.coordsystem == "cylindrical"):
m.add_density_grid(numpy.transpose(self.grid.density[i], \
axes=(1,2,0)), d[i])
if (self.grid.coordsystem == "spherical"):
m.add_density_grid(numpy.transpose(self.grid.density[i], \
axes=(2,1,0)), d[i])
sources = []
for i in range(len(self.grid.stars)):
sources.append(m.add_spherical_source())
sources[i].luminosity = self.grid.stars[i].luminosity * L_sun
sources[i].radius = self.grid.stars[i].radius * R_sun
sources[i].temperature = self.grid.stars[i].temperature
m.set_mrw(mrw)
m.set_pda(pda)
m.set_max_interactions(max_interactions)
m.set_n_initial_iterations(niterations)
m.set_n_photons(initial=nphot, imaging=0)
m.set_convergence(True, percentile=percentile, absolute=absolute, \
relative=relative)
m.write("temp.rtin")
m.run("temp.rtout", mpi=mpi, n_processes=nprocesses)
n = ModelOutput("temp.rtout")
grid = n.get_quantities()
self.grid.temperature = []
temperature = grid.quantities['temperature']
for i in range(len(temperature)):
if (self.grid.coordsystem == "cartesian"):
self.grid.temperature.append(numpy.transpose(temperature[i], \
axes=(2,1,0)))
if (self.grid.coordsystem == "cylindrical"):
self.grid.temperature.append(numpy.transpose(temperature[i], \
axes=(2,0,1)))
if (self.grid.coordsystem == "spherical"):
self.grid.temperature.append(numpy.transpose(temperature[i], \
axes=(2,1,0)))
os.system("rm temp.rtin temp.rtout")
示例6: setup_model
# 需要导入模块: from hyperion.model import Model [as 别名]
# 或者: from hyperion.model.Model import add_spherical_source [as 别名]
#.........这里部分代码省略.........
# else:
# mu_o_dum = roots[imu]
# if mu_o_dum == -0.5:
# print 'Problem with cubic solving, roots are: ', roots
# mu_o = mu_o_dum.real
# rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1)
# # Disk profile
# if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
# h = ((w/(100*AU))**beta)*h100
# rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
# # Combine envelope and disk
# rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi]
else:
rho[ir,itheta,iphi] = 1e-30
rho_env = rho_env + 1e-40
rho_disk = rho_disk + 1e-40
rho = rho + 1e-40
else:
for ir in range(0,len(rc)):
for itheta in range(0,len(thetac)):
for iphi in range(0,len(phic)):
# Envelope profile
w = abs(rc[ir]*np.cos(thetac[itheta]))
z = rc[ir]*np.sin(thetac[itheta])
z_cav = c*abs(w)**1.5
z_cav_wall = c*abs(w-wall)**1.5
if z_cav == 0:
z_cav = R_env_max
if abs(z) > abs(z_cav):
# rho_env[ir,itheta,iphi] = rho_cav
# Modification for using density gradient in the cavity
if rc[ir] <= 20*AU:
rho_env[ir,itheta,iphi] = rho_cav_center*((rc[ir]/AU)**2)
else:
rho_env[ir,itheta,iphi] = rho_cav_center*discont*(20*AU/rc[ir])**2
i += 1
elif (abs(z) > abs(z_cav_wall)) and (abs(z) < abs(z_cav)):
rho_env[ir,itheta,iphi] = rho_wall
else:
j += 1
mu = abs(np.cos(thetac[itheta]))
mu_o = np.abs(fsolve(func,[0.5,0.5,0.5],args=(rc[ir],rcen,mu))[0])
rho_env[ir,itheta,iphi] = M_env_dot/(4*PI*(G*mstar*rcen**3)**0.5)*(rc[ir]/rcen)**(-3./2)*(1+mu/mu_o)**(-0.5)*(mu/mu_o+2*mu_o**2*rcen/rc[ir])**(-1)
# Disk profile
if ((w >= R_disk_min) and (w <= R_disk_max)) == True:
h = ((w/(100*AU))**beta)*h100
rho_disk[ir,itheta,iphi] = rho_0*(1-np.sqrt(rstar/w))*(rstar/w)**(beta+1)*np.exp(-0.5*(z/h)**2)
# Combine envelope and disk
rho[ir,itheta,iphi] = rho_disk[ir,itheta,iphi] + rho_env[ir,itheta,iphi]
rho_env = rho_env + 1e-40
rho_disk = rho_disk + 1e-40
rho = rho + 1e-40
# Insert the calculated grid and dust density profile into hyperion
m.set_spherical_polar_grid(ri, thetai, phii)
m.add_density_grid(rho.T, outdir+'oh5.hdf5') # numpy read the array in reverse order
# Define the luminsoity source
source = m.add_spherical_source()
source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s]
source.radius = rstar # [cm]
source.temperature = tstar # [K]
source.position = (0., 0., 0.)
print 'L_center = % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS)
# Setting up images and SEDs
image = m.add_peeled_images()
image.set_wavelength_range(300, 2.0, 670.0)
# pixel number
image.set_image_size(300, 300)
image.set_image_limits(-R_env_max, R_env_max, -R_env_max, R_env_max)
image.set_viewing_angles([82.0], [0.0])
image.set_uncertainties(True)
# output as 64-bit
image.set_output_bytes(8)
# Radiative transfer setting
# number of photons for temp and image
m.set_raytracing(True)
m.set_n_photons(initial=1000000, imaging=1000000, raytracing_sources=1000000, raytracing_dust=1000000)
# number of iteration to compute dust specific energy (temperature)
m.set_n_initial_iterations(5)
m.set_convergence(True, percentile=99., absolute=1.5, relative=1.02)
m.set_mrw(True) # Gamma = 1 by default
# Output setting
# Density
m.conf.output.output_density = 'last'
# Density difference (shows where dust was destroyed)
m.conf.output.output_density_diff = 'none'
# Energy absorbed (using pathlengths)
m.conf.output.output_specific_energy = 'last'
# Number of unique photons that passed through the cell
m.conf.output.output_n_photons = 'last'
m.write(outdir+'old_setup2.rtin')
示例7: setup_model
# 需要导入模块: from hyperion.model import Model [as 别名]
# 或者: from hyperion.model.Model import add_spherical_source [as 别名]
#.........这里部分代码省略.........
# fix the tick label font
ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=18)
for label in ax.get_xticklabels():
label.set_fontproperties(ticks_font)
for label in ax.get_yticklabels():
label.set_fontproperties(ticks_font)
ax.set_ylim([0,15])
fig.gca().set_xlim(left=np.log10(0.05))
# ax.set_xlim([np.log10(0.8),np.log10(10000)])
# subplot shows the radial density profile along the midplane
ax_mid = plt.axes([0.2,0.2,0.2,0.2], frameon=True)
ax_mid.plot(np.log10(rc/AU), np.log10(rho2d[:,199]/g2d/mmw/mh),'o',color='b',linewidth=1, markersize=2)
ax_mid.plot(np.log10(rc/AU), np.log10(rho_env_tsc2d[:,199]/mmw/mh),'-',color='r',linewidth=1, markersize=2)
# ax_mid.set_ylim([0,10])
# ax_mid.set_xlim([np.log10(0.8),np.log10(10000)])
ax_mid.set_ylim([0,15])
fig.savefig(outdir+outname+'_gas_radial.pdf',format='pdf',dpi=300,bbox_inches='tight')
fig.clf()
# Insert the calculated grid and dust density profile into hyperion
m.set_spherical_polar_grid(ri, thetai, phii)
# temperary for comparing full TSC and infall-only TSC model
# import sys
# sys.path.append(os.path.expanduser('~')+'/programs/misc/')
# from tsc_comparison import tsc_com
# rho_tsc, rho_ulrich = tsc_com()
m.add_density_grid(rho_dust.T, d)
# m.add_density_grid(rho.T, outdir+'oh5.hdf5') # numpy read the array in reverse order
# Define the luminsoity source
source = m.add_spherical_source()
source.luminosity = (4*PI*rstar**2)*sigma*(tstar**4) # [ergs/s]
source.radius = rstar # [cm]
source.temperature = tstar # [K]
source.position = (0., 0., 0.)
print 'L_center = % 5.2f L_sun' % ((4*PI*rstar**2)*sigma*(tstar**4)/LS)
# # add an infrared source at the center
# L_IR = 0.04
# ir_source = m.add_spherical_source()
# ir_source.luminosity = L_IR*LS
# ir_source.radius = rstar # [cm]
# ir_source.temperature = 500 # [K] peak at 10 um
# ir_source.position = (0., 0., 0.)
# print 'Additional IR source, L_IR = %5.2f L_sun' % L_IR
# Setting up the wavelength for monochromatic radiative transfer
lambda0 = 0.1
lambda1 = 2.0
lambda2 = 50.0
lambda3 = 95.0
lambda4 = 200.0
lambda5 = 314.0
lambda6 = 1000.0
n01 = 10.0
n12 = 20.0
n23 = 50.0
lam01 = lambda0 * (lambda1/lambda0)**(np.arange(n01)/n01)
lam12 = lambda1 * (lambda2/lambda1)**(np.arange(n12)/n12)
lam23 = lambda2 * (lambda6/lambda2)**(np.arange(n23+1)/n23)
lam = np.concatenate([lam01,lam12,lam23])