本文整理汇总了Python中holoviews.core.data.Dataset类的典型用法代码示例。如果您正苦于以下问题:Python Dataset类的具体用法?Python Dataset怎么用?Python Dataset使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Dataset类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_dimension_values_vdim
def test_dimension_values_vdim(self):
cube = Dataset(self.cube, kdims=['longitude', 'latitude'])
self.assertEqual(cube.dimension_values('unknown', flat=False),
np.flipud(np.array([[ 0, 4, 8],
[ 1, 5, 9],
[ 2, 6, 10],
[ 3, 7, 11]], dtype=np.int32).T))
示例2: test_dataset_groupby_drop_dims_dynamic_with_vdim
def test_dataset_groupby_drop_dims_dynamic_with_vdim(self):
array = da.from_array(np.random.rand(3, 20, 10), 3)
ds = Dataset({'x': range(10), 'y': range(20), 'z': range(3), 'Val': array, 'Val2': array*2},
kdims=['x', 'y', 'z'], vdims=['Val', 'Val2'])
with DatatypeContext([self.datatype, 'dictionary' , 'dataframe'], (ds, Dataset)):
partial = ds.to(Dataset, kdims=['Val'], vdims=['Val2'], groupby='y', dynamic=True)
self.assertEqual(partial[19]['Val'], array[:, -1, :].T.flatten().compute())
示例3: test_dataset_2D_aggregate_partial_hm_alias
def test_dataset_2D_aggregate_partial_hm_alias(self):
array = da.from_array(np.random.rand(11, 11), 3)
dataset = Dataset({'x':self.xs, 'y':self.y_ints, 'z': array},
kdims=[('x', 'X'), ('y', 'Y')], vdims=[('z', 'Z')])
self.assertEqual(dataset.aggregate(['X'], np.mean),
Dataset({'x':self.xs, 'z': np.mean(array, axis=0).compute()},
kdims=[('x', 'X')], vdims=[('z', 'Z')]))
示例4: test_dataset_2D_aggregate_partial_hm
def test_dataset_2D_aggregate_partial_hm(self):
array = np.random.rand(11, 11)
dataset = Dataset({'x':self.xs, 'y':self.y_ints, 'z': array},
kdims=['x', 'y'], vdims=['z'])
self.assertEqual(dataset.aggregate(['x'], np.mean),
Dataset({'x':self.xs, 'z': np.mean(array, axis=0)},
kdims=['x'], vdims=['z']))
示例5: test_dataset_groupby_drop_dims_with_vdim
def test_dataset_groupby_drop_dims_with_vdim(self):
array = np.random.rand(3, 20, 10)
ds = Dataset({'x': range(10), 'y': range(20), 'z': range(3), 'Val': array, 'Val2': array*2},
kdims=['x', 'y', 'z'], vdims=['Val', 'Val2'])
with DatatypeContext([self.datatype, 'dictionary' , 'dataframe'], (ds, Dataset)):
partial = ds.to(Dataset, kdims=['Val'], vdims=['Val2'], groupby='y')
self.assertEqual(partial.last['Val'], array[:, -1, :].T.flatten())
示例6: test_irregular_grid_data_values_inverted_y
def test_irregular_grid_data_values_inverted_y(self):
nx, ny = 20, 5
xs, ys = np.meshgrid(np.arange(nx)+0.5, np.arange(ny)*-1+0.5)
zs = np.arange(100).reshape(5, 20)
ds = Dataset((xs, ys, zs), ['x', 'y'], 'z')
self.assertEqual(ds.dimension_values(2, flat=False), zs)
self.assertEqual(ds.interface.coords(ds, 'x'), xs)
self.assertEqual(ds.interface.coords(ds, 'y'), ys)
示例7: test_dataset_2D_reduce_hm_alias
def test_dataset_2D_reduce_hm_alias(self):
array = np.random.rand(11, 11)
dataset = Dataset({'x':self.xs, 'y':self.y_ints, 'z': array},
kdims=[('x', 'X'), ('y', 'Y')], vdims=[('z', 'Z')])
self.assertEqual(np.array(dataset.reduce(['x', 'y'], np.mean)),
np.mean(array))
self.assertEqual(np.array(dataset.reduce(['X', 'Y'], np.mean)),
np.mean(array))
示例8: test_multi_dimension_groupby
def test_multi_dimension_groupby(self):
x, y, z = list('AB'*10), np.arange(20)%3, np.arange(20)
ds = Dataset((x, y, z), kdims=['x', 'y'], vdims=['z'], datatype=[self.datatype])
keys = [('A', 0), ('B', 1), ('A', 2), ('B', 0), ('A', 1), ('B', 2)]
grouped = ds.groupby(['x', 'y'])
self.assertEqual(grouped.keys(), keys)
group = Dataset({'z': [5, 11, 17]}, vdims=['z'])
self.assertEqual(grouped.last, group)
示例9: test_select_dropped_dimensions_restoration
def test_select_dropped_dimensions_restoration(self):
d = np.random.randn(3, 8)
da = xr.DataArray(d, name='stuff', dims=['chain', 'value'],
coords=dict(chain=range(d.shape[0]), value=range(d.shape[1])))
ds = Dataset(da)
t = ds.select(chain=0)
self.assertEqual(t.data.dims , dict(chain=1,value=8))
self.assertEqual(t.data.stuff.shape , (1,8))
示例10: test_zero_sized_coordinates_range
def test_zero_sized_coordinates_range(self):
da = xr.DataArray(np.empty((2, 0)), dims=('y', 'x'), coords={'x': [], 'y': [0 ,1]}, name='A')
ds = Dataset(da)
x0, x1 = ds.range('x')
self.assertTrue(np.isnan(x0))
self.assertTrue(np.isnan(x1))
z0, z1 = ds.range('A')
self.assertTrue(np.isnan(z0))
self.assertTrue(np.isnan(z1))
示例11: test_dataset_groupby_multiple_dims
def test_dataset_groupby_multiple_dims(self):
dataset = Dataset((range(8), range(8), range(8), range(8),
da.from_array(np.random.rand(8, 8, 8, 8), 4)),
kdims=['a', 'b', 'c', 'd'], vdims=['Value'])
grouped = dataset.groupby(['c', 'd'])
keys = list(product(range(8), range(8)))
self.assertEqual(list(grouped.keys()), keys)
for c, d in keys:
self.assertEqual(grouped[c, d], dataset.select(c=c, d=d).reindex(['a', 'b']))
示例12: test_dataset_groupby_dynamic_alias
def test_dataset_groupby_dynamic_alias(self):
array = da.from_array(np.random.rand(11, 11), 3)
dataset = Dataset({'x':self.xs, 'y':self.y_ints, 'z': array},
kdims=[('x', 'X'), ('y', 'Y')], vdims=[('z', 'Z')])
with DatatypeContext([self.datatype, 'dictionary' , 'dataframe'], dataset):
grouped = dataset.groupby('X', dynamic=True)
first = Dataset({'y': self.y_ints, 'z': array[:, 0].compute()},
kdims=[('y', 'Y')], vdims=[('z', 'Z')])
self.assertEqual(grouped[0], first)
示例13: test_dataset_groupby_dynamic
def test_dataset_groupby_dynamic(self):
array = np.random.rand(11, 11)
dataset = Dataset({'x':self.xs, 'y':self.y_ints, 'z': array},
kdims=['x', 'y'], vdims=['z'])
with DatatypeContext([self.datatype, 'dictionary' , 'dataframe'], dataset):
grouped = dataset.groupby('x', dynamic=True)
first = Dataset({'y': self.y_ints, 'z': array[:, 0]},
kdims=['y'], vdims=['z'])
self.assertEqual(grouped[0], first)
示例14: test_xarray_dataset_with_scalar_dim_canonicalize
def test_xarray_dataset_with_scalar_dim_canonicalize(self):
xs = [0, 1]
ys = [0.1, 0.2, 0.3]
zs = np.array([[[0, 1], [2, 3], [4, 5]]])
xrarr = xr.DataArray(zs, coords={'x': xs, 'y': ys, 't': [1]}, dims=['t', 'y', 'x'])
xrds = xr.Dataset({'v': xrarr})
ds = Dataset(xrds, kdims=['x', 'y'], vdims=['v'], datatype=['xarray'])
canonical = ds.dimension_values(2, flat=False)
self.assertEqual(canonical.ndim, 2)
expected = np.array([[0, 1], [2, 3], [4, 5]])
self.assertEqual(canonical, expected)
示例15: test_xarray_dataset_names_and_units
def test_xarray_dataset_names_and_units(self):
xs = [0.1, 0.2, 0.3]
ys = [0, 1]
zs = np.array([[0, 1], [2, 3], [4, 5]])
da = xr.DataArray(zs, coords=[('x_dim', xs), ('y_dim', ys)], name="data_name", dims=['y_dim', 'x_dim'])
da.attrs['long_name'] = "data long name"
da.attrs['units'] = "array_unit"
da.x_dim.attrs['units'] = "x_unit"
da.y_dim.attrs['long_name'] = "y axis long name"
dataset = Dataset(da)
self.assertEqual(dataset.get_dimension("x_dim"), Dimension("x_dim", unit="x_unit"))
self.assertEqual(dataset.get_dimension("y_dim"), Dimension("y_dim", label="y axis long name"))
self.assertEqual(dataset.get_dimension("data_name"),
Dimension("data_name", label="data long name", unit="array_unit"))