本文整理汇总了Python中graphillion.GraphSet.symmetric_difference_update方法的典型用法代码示例。如果您正苦于以下问题:Python GraphSet.symmetric_difference_update方法的具体用法?Python GraphSet.symmetric_difference_update怎么用?Python GraphSet.symmetric_difference_update使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类graphillion.GraphSet
的用法示例。
在下文中一共展示了GraphSet.symmetric_difference_update方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_binary_operators
# 需要导入模块: from graphillion import GraphSet [as 别名]
# 或者: from graphillion.GraphSet import symmetric_difference_update [as 别名]
def test_binary_operators(self):
u = [g0, g1, g12, g123, g1234, g134, g14, g4]
v = [g12, g14, g23, g34]
gs = GraphSet(u) | GraphSet(v)
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(
gs, GraphSet([g0, g1, g12, g123, g1234, g134, g14, g23, g34, g4]))
gs = GraphSet(u).union(GraphSet(u), GraphSet(v))
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(
gs, GraphSet([g0, g1, g12, g123, g1234, g134, g14, g23, g34, g4]))
gs = GraphSet(u)
gs |= GraphSet(v)
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(
gs, GraphSet([g0, g1, g12, g123, g1234, g134, g14, g23, g34, g4]))
gs = GraphSet(u)
gs.update(GraphSet(u), GraphSet(v))
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(
gs, GraphSet([g0, g1, g12, g123, g1234, g134, g14, g23, g34, g4]))
gs = GraphSet(u) & GraphSet(v)
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g12, g14]))
gs = GraphSet(u).intersection(GraphSet(u), GraphSet(v))
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g12, g14]))
gs = GraphSet(u)
gs &= GraphSet(v)
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g12, g14]))
gs = GraphSet(u)
gs.intersection_update(GraphSet(u), GraphSet(v))
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g12, g14]))
gs = GraphSet(u) - GraphSet(v)
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g0, g1, g123, g1234, g134, g4]))
gs = GraphSet(u).difference(GraphSet(), GraphSet(v))
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g0, g1, g123, g1234, g134, g4]))
gs = GraphSet(u)
gs -= GraphSet(v)
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g0, g1, g123, g1234, g134, g4]))
gs = GraphSet(u)
gs.difference_update(GraphSet(), GraphSet(v))
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g0, g1, g123, g1234, g134, g4]))
gs = GraphSet(u) ^ GraphSet(v)
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g0, g1, g123, g1234, g134, g23, g34, g4]))
gs = GraphSet(u).symmetric_difference(GraphSet(), GraphSet(v))
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g0, g1, g123, g1234, g134, g23, g34, g4]))
gs = GraphSet(u)
gs ^= GraphSet(v)
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g0, g1, g123, g1234, g134, g23, g34, g4]))
gs = GraphSet(u)
gs.symmetric_difference_update(GraphSet(), GraphSet(v))
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g0, g1, g123, g1234, g134, g23, g34, g4]))
v = [g12]
gs = GraphSet(u) / GraphSet(v)
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g0, g3, g34]))
gs = GraphSet(u).quotient(GraphSet(v))
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g0, g3, g34]))
gs = GraphSet(u)
gs /= GraphSet(v)
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g0, g3, g34]))
gs = GraphSet(u)
gs.quotient_update(GraphSet(v))
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g0, g3, g34]))
gs = GraphSet(u) % GraphSet(v)
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g0, g1, g134, g14, g4]))
gs = GraphSet(u).remainder(GraphSet(v))
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g0, g1, g134, g14, g4]))
gs = GraphSet(u)
gs %= GraphSet(v)
self.assertTrue(isinstance(gs, GraphSet))
self.assertEqual(gs, GraphSet([g0, g1, g134, g14, g4]))
#.........这里部分代码省略.........