本文整理汇总了Python中grammar.Grammar.get_possible_parent_rules方法的典型用法代码示例。如果您正苦于以下问题:Python Grammar.get_possible_parent_rules方法的具体用法?Python Grammar.get_possible_parent_rules怎么用?Python Grammar.get_possible_parent_rules使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类grammar.Grammar
的用法示例。
在下文中一共展示了Grammar.get_possible_parent_rules方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from grammar import Grammar [as 别名]
# 或者: from grammar.Grammar import get_possible_parent_rules [as 别名]
#.........这里部分代码省略.........
# (0 is start of sentence)
for token in tokens:
node += 1
rule = ProductionRule(token, [], 1.0)
edge = Edge(node, node+1, rule, 0, [])
self.queue.add_edge(edge)
def enough_parses_found(self, number_of_parses):
'''
Check if enough parses have been found for the input sentence
Return True if the number of complete S edges that the chart
contains is >= the number of parses that the user wants, else
False
'''
return False if (number_of_parses == -1 or len(self.chart.get_s_edges()) < number_of_parses) else True
def predict_rule(self, complete_edge):
'''
If the LHS of a complete edge can be the first RHS element of
a production rule, create a self-loop edge with that rule and
push it to the queue
Input: Complete edge
Push to queue: Incomplete self-loop edges
Formal definition:
For each complete edge [A -> alpha . , (i, j)]
and each production rule B -> A beta,
add the self-loop edge [B -> . A beta , (i, i)]
'''
start = complete_edge.get_start()
lhs = complete_edge.get_prod_rule().get_lhs()
parent_rules = self.grammar.get_possible_parent_rules(lhs)
for parent_rule in parent_rules:
new_edge = Edge(start, start, parent_rule, 0, [])
if not self.queue.has_edge(new_edge) and not self.chart.has_edge(new_edge):
self.queue.add_edge(new_edge)
def fundamental_rule(self, input_edge):
'''
If an incomplete edge can be advanced by a complete edge,
create a new edge with the advanced dot.
Create new edges (which can be complete or incomplete) by
"advancing the dot", i.e. by matching incomplete edges with
appropriate complete ones:
(1) If the input edge is incomplete, find all complete edges
- whose start node equals the end node of the input edge
- whose LHS matches the RHS element
that the input edge is currently looking for.
If the input edge is complete, find all incomplete edges
- whose end node equals the start node of the input edge
- whose dot can be advanced by pairing them with the input
edge.
(2) From every pairing, create a new edge with the dot
advanced over the RHS element that has just been found.
(3) Push that edge to the queue IFF it does not exist already,
i.e. if it has not been added to the chart or the queue
before. This constraint keeps the parser from entering an
infinite loop when using left-recursive grammar rules.
Input: Single edge
Push to queue: Complete and incomplete edges