当前位置: 首页>>代码示例>>Python>>正文


Python OCLArray.from_array方法代码示例

本文整理汇总了Python中gputools.OCLArray.from_array方法的典型用法代码示例。如果您正苦于以下问题:Python OCLArray.from_array方法的具体用法?Python OCLArray.from_array怎么用?Python OCLArray.from_array使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在gputools.OCLArray的用法示例。


在下文中一共展示了OCLArray.from_array方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _deconv_rl_np

# 需要导入模块: from gputools import OCLArray [as 别名]
# 或者: from gputools.OCLArray import from_array [as 别名]
def _deconv_rl_np(data, h, Niter = 10, ):
    """
    """
    d_g = OCLArray.from_array(data.astype(np.float32, copy = False))
    h_g = OCLArray.from_array(h.astype(np.float32, copy = False))
    res_g = _deconv_rl_gpu_conv(d_g,h_g,Niter)
    return res_g.get()
开发者ID:DerThorsten,项目名称:gputools,代码行数:9,代码来源:deconv_rl.py

示例2: test_3d

# 需要导入模块: from gputools import OCLArray [as 别名]
# 或者: from gputools.OCLArray import from_array [as 别名]
def test_3d():
    from time import time
    Niter = 10
    
    data = np.zeros((128,)*3,np.float32)

    data[30,30,30] = 1.
    hx = 1./5*np.ones(5)
    hy = 1./13*np.ones(13)
    hz = 1./13*np.ones(11)

    t = time()
    for _ in range(Niter):
        out = convolve_sep3(data,hx,hy, hz)
    print "time: %.3f ms"%(1000.*(time()-t)/Niter)

    data_g = OCLArray.from_array(data.astype(np.float32))
    hx_g = OCLArray.from_array(hx.astype(np.float32))
    hy_g = OCLArray.from_array(hy.astype(np.float32))
    hz_g = OCLArray.from_array(hz.astype(np.float32))

    t = time()
    for _ in range(Niter):
        out_g = convolve_sep3(data_g,hx_g,hy_g, hz_g)

    out_g.get();
    print "time: %.3f ms"%(1000.*(time()-t)/Niter)

        
    return  out, out_g.get()
开发者ID:maweigert,项目名称:gputools,代码行数:32,代码来源:convolve_sep.py

示例3: _convolve_sep2_numpy

# 需要导入模块: from gputools import OCLArray [as 别名]
# 或者: from gputools.OCLArray import from_array [as 别名]
def _convolve_sep2_numpy(data,hx,hy):
    hx_g = OCLArray.from_array(hx.astype(np.float32))
    hy_g = OCLArray.from_array(hy.astype(np.float32))

    data_g = OCLArray.from_array(data.astype(np.float32))

    return _convolve_sep2_gpu(data_g,hx_g,hy_g).get()
开发者ID:maweigert,项目名称:gputools,代码行数:9,代码来源:convolve_sep.py

示例4: _fft_convolve_numpy

# 需要导入模块: from gputools import OCLArray [as 别名]
# 或者: from gputools.OCLArray import from_array [as 别名]
def _fft_convolve_numpy(data, h, plan = None,
                        kernel_is_fft = False,
                        kernel_is_fftshifted = False):
    """ convolving via opencl fft for numpy arrays

    data and h must have the same size
    """

    dev = get_device()

    if data.shape != h.shape:
        raise ValueError("data and kernel must have same size! %s vs %s "%(str(data.shape),str(h.shape)))

    
    data_g = OCLArray.from_array(data.astype(np.complex64))

    if not kernel_is_fftshifted:
        h = np.fft.fftshift(h)

    
    h_g = OCLArray.from_array(h.astype(np.complex64))
    res_g = OCLArray.empty_like(data_g)
    
    _fft_convolve_gpu(data_g,h_g,res_g = res_g,
                      plan = plan,
                      kernel_is_fft = kernel_is_fft)

    res =  abs(res_g.get())

    del data_g
    del h_g
    del res_g
    
    return res
开发者ID:robintw,项目名称:gputools,代码行数:36,代码来源:oclfft_convolve.py

示例5: setup

# 需要导入模块: from gputools import OCLArray [as 别名]
# 或者: from gputools.OCLArray import from_array [as 别名]
    def setup(self, size, units, lam=0.5, n0=1.0, use_fresnel_approx=False):
        """
            sets up the internal variables e.g. propagators etc...

            :param size:  the size of the geometry in pixels (Nx,Ny,Nz)
            :param units: the phyiscal units of each voxel in microns (dx,dy,dz)
            :param lam: the wavelength of light in microns
            :param n0:  the refractive index of the surrounding media
            :param use_fresnel_approx:  if True, uses fresnel approximation for propagator


        """
        Bpm3d_Base.setup(self, size, units, lam=lam, n0=n0, use_fresnel_approx=use_fresnel_approx)

        # setting up the gpu buffers and kernels
        self.program = OCLProgram(absPath("kernels/bpm_3d_kernels.cl"))

        Nx, Ny = self.size[:2]
        plan = fft_plan(())
        self._H_g = OCLArray.from_array(self._H.astype(np.complex64))

        self.scatter_weights_g = OCLArray.from_array(self.scatter_weights.astype(np.float32))
        self.gfactor_weights_g = OCLArray.from_array(self.gfactor_weights.astype(np.float32))

        self.scatter_cross_sec_g = OCLArray.zeros(Nz, "float32")
        self.gfactor_g = OCLArray.zeros(Nz, "float32")

        self.reduce_kernel = OCLReductionKernel(
            np.float32,
            neutral="0",
            reduce_expr="a+b",
            map_expr="weights[i]*cfloat_abs(field[i]-(i==0)*plain)*cfloat_abs(field[i]-(i==0)*plain)",
            arguments="__global cfloat_t *field, __global float * weights,cfloat_t plain",
        )
开发者ID:maweigert,项目名称:bpm,代码行数:36,代码来源:bpm_class.py

示例6: _convolve_np

# 需要导入模块: from gputools import OCLArray [as 别名]
# 或者: from gputools.OCLArray import from_array [as 别名]
def _convolve_np(data, h):
    """
    numpy variant
    """

    
    data_g = OCLArray.from_array(data.astype(np.float32, copy = False))
    h_g = OCLArray.from_array(h.astype(np.float32, copy = False))
    
    return _convolve_buf(data_g, h_g).get()  
开发者ID:DerThorsten,项目名称:gputools,代码行数:12,代码来源:convolve.py

示例7: fftshift

# 需要导入模块: from gputools import OCLArray [as 别名]
# 或者: from gputools.OCLArray import from_array [as 别名]
def fftshift(arr_obj, axes = None, res_g = None, return_buffer = False):
    """
    gpu version of fftshift for numpy arrays or OCLArrays

    Parameters
    ----------
    arr_obj: numpy array or OCLArray (float32/complex64)
        the array to be fftshifted
    axes: list or None
        the axes over which to shift (like np.fft.fftshift)
        if None, all axes are taken
    res_g:
        if given, fills it with the result (has to be same shape and dtype as arr_obj)
        else internally creates a new one
    Returns
    -------
        if return_buffer, returns the result as (well :) OCLArray
        else returns the result as numpy array

    """

    if axes is None:
        axes = range(arr_obj.ndim)


    if isinstance(arr_obj, OCLArray):
        if not arr_obj.dtype.type in DTYPE_KERNEL_NAMES.keys():
            raise NotImplementedError("only works for float32 or complex64")
    elif isinstance(arr_obj, np.ndarray):
        if np.iscomplexobj(arr_obj):
            arr_obj = OCLArray.from_array(arr_obj.astype(np.complex64,copy = False))
        else:
            arr_obj = OCLArray.from_array(arr_obj.astype(np.float32,copy = False))
    else:
        raise ValueError("unknown type (%s)"%(type(arr_obj)))

    if not np.all([arr_obj.shape[a]%2==0 for a in axes]):
        raise NotImplementedError("only works on axes of even dimensions")

    if res_g is None:
        res_g = OCLArray.empty_like(arr_obj)


    # iterate over all axes
    # FIXME: this is still rather inefficient
    in_g = arr_obj
    for ax in axes:
        _fftshift_single(in_g, res_g, ax)
        in_g = res_g

    if return_buffer:
        return res_g
    else:
        return res_g.get()
开发者ID:maweigert,项目名称:gputools,代码行数:56,代码来源:fftshift.py

示例8: _deconv_rl_np_fft

# 需要导入模块: from gputools import OCLArray [as 别名]
# 或者: from gputools.OCLArray import from_array [as 别名]
def _deconv_rl_np_fft(data, h, Niter = 10, 
                h_is_fftshifted = False):
    """ deconvolves data with given psf (kernel) h

    data and h have to be same shape

    
    via lucy richardson deconvolution
    """

    if data.shape != h.shape:
        raise ValueError("data and h have to be same shape")

    if not h_is_fftshifted:
        h = np.fft.fftshift(h)


    hflip = h[::-1,::-1]
        
    #set up some gpu buffers
    y_g = OCLArray.from_array(data.astype(np.complex64))
    u_g = OCLArray.from_array(data.astype(np.complex64))
    
    tmp_g = OCLArray.empty(data.shape,np.complex64)

    hf_g = OCLArray.from_array(h.astype(np.complex64))
    hflip_f_g = OCLArray.from_array(hflip.astype(np.complex64))

    # hflipped_g = OCLArray.from_array(h.astype(np.complex64))
    
    plan = fft_plan(data.shape)

    #transform psf
    fft(hf_g,inplace = True)
    fft(hflip_f_g,inplace = True)

    for i in range(Niter):
        print i
        fft_convolve(u_g, hf_g,
                     res_g = tmp_g,
                     kernel_is_fft = True)

        _complex_divide_inplace(y_g,tmp_g)

        fft_convolve(tmp_g,hflip_f_g,
                     inplace = True,
                     kernel_is_fft = True)

        _complex_multiply_inplace(u_g,tmp_g)
        

    return np.abs(u_g.get())
开发者ID:DerThorsten,项目名称:gputools,代码行数:54,代码来源:deconv_rl.py

示例9: _deconv_rl_gpu_conv

# 需要导入模块: from gputools import OCLArray [as 别名]
# 或者: from gputools.OCLArray import from_array [as 别名]
def _deconv_rl_gpu_conv(data_g, h_g, Niter = 10):
    """ 
    using convolve

    """
        
    #set up some gpu buffers
    u_g = OCLArray.empty(data_g.shape,np.float32)

    u_g.copy_buffer(data_g)
    
    tmp_g = OCLArray.empty(data_g.shape,np.float32)
    tmp2_g = OCLArray.empty(data_g.shape,np.float32)

    #fix this
    hflip_g = OCLArray.from_array((h_g.get()[::-1,::-1]).copy())

    for i in range(Niter):
        convolve(u_g, h_g,
                 res_g = tmp_g)


        _divide_inplace(data_g,tmp_g)

        # return data_g, tmp_g
        
        convolve(tmp_g, hflip_g,
                 res_g = tmp2_g)
        _multiply_inplace(u_g,tmp2_g)

    return u_g
开发者ID:DerThorsten,项目名称:gputools,代码行数:33,代码来源:deconv_rl.py

示例10: gpu_kuwahara

# 需要导入模块: from gputools import OCLArray [as 别名]
# 或者: from gputools.OCLArray import from_array [as 别名]
def gpu_kuwahara(data, N=5):
    """Function to convolve an imgage with the Kuwahara filter on GPU."""
    # create numpy arrays


    if (N%2==0):       
        raise ValueError("Data has to be a (2n+1)x(2n+1) array.")

    
    data_g = OCLArray.from_array(data.astype(float32)) 
       
    res_g = OCLArray.empty((data.shape[0],data.shape[1]),float32) 
    
    prog = OCLProgram("./OpenCL/gpu_kernels/gpu_kuwahara.cl")
    
    # start kernel on gput
    prog.run_kernel("kuwahara",   # the name of the kernel in the cl file
                   data_g.shape[::-1], # global size, the number of threads e.g. (128,128,) 
                    None,   # local size, just leave it to None
                    data_g.data,res_g.data,
                    int32(N)) 
                    
    
#                    
    
    return res_g.get()
开发者ID:adibrov,项目名称:RunForestGUI,代码行数:28,代码来源:gpu_kuwahara.py

示例11: test_parseval

# 需要导入模块: from gputools import OCLArray [as 别名]
# 或者: from gputools.OCLArray import from_array [as 别名]
def test_parseval():

    from time import time
    Nx = 512
    Nz  = 10
    d = np.random.uniform(-1,1,(Nx,Nx)).astype(np.complex64)
    d_g = OCLArray.from_array(d.astype(np.complex64))

    s1, s2 = [],[]
    t = time()
    for i in range(Nz):
        print i
        # myfunc(d_g)

        # fft(d_g, inplace=True, fast_math=False)
        # fft(d_g, inverse = True,inplace=True,fast_math=False)

        fft(d_g, inplace=True)
        # fft(d_g, inverse = True,inplace=True)

    s1.append(np.sum(np.abs(d_g.get())**2))

    print time()-t

    for i in range(Nz):
        print i
        d = np.fft.fftn(d).astype(np.complex64)
        d = np.fft.ifftn(d).astype(np.complex64)
        s2.append(np.sum(np.abs(d)**2))

    return s1, s2
开发者ID:maweigert,项目名称:gputools,代码行数:33,代码来源:test_fft_accur.py

示例12: create_dn_buffer

# 需要导入模块: from gputools import OCLArray [as 别名]
# 或者: from gputools.OCLArray import from_array [as 别名]
def create_dn_buffer(size, units,points,
                     dn_inner = .0, rad_inner = 0,
                     dn_outer = .1, rad_outer = .4):

    Nx, Ny, Nz = size
    dx, dy, dz = units

    program = OCLProgram(absPath("kernels/bpm_3d_spheres.cl"))


    dn_g = OCLArray.empty((Nz,Ny,Nx),dtype=np.float32)

    # sort by z
    ps = np.array(points)
    ps = ps[np.argsort(ps[:,2]),:]

    Np = ps.shape[0]

    pointsBuf = OCLArray.from_array(ps.flatten().astype(np.float32))

    program.run_kernel("fill_dn",(Nx,Ny,Nz),None,dn_g.data,
                       pointsBuf.data,np.int32(Np),
                       np.float32(dx),np.float32(dy),np.float32(dz),
                       np.float32(dn_inner),np.float32(rad_inner),
                       np.float32(dn_outer),np.float32(rad_outer))


    return dn_g
开发者ID:maweigert,项目名称:bpm,代码行数:30,代码来源:bpm_3d_spheres.py

示例13: test_2d

# 需要导入模块: from gputools import OCLArray [as 别名]
# 或者: from gputools.OCLArray import from_array [as 别名]
def test_2d():
    import time
    
    data = np.zeros((100,)*2,np.float32)

    data[50,50] = 1.
    hx = 1./5*np.ones(5)
    hy = 1./13*np.ones(13)

    out = convolve_sep2(data,hx,hy)

    data_g = OCLArray.from_array(data.astype(np.float32))
    hx_g = OCLArray.from_array(hx.astype(np.float32))
    hy_g = OCLArray.from_array(hy.astype(np.float32))

    out_g = convolve_sep2(data_g,hx_g,hy_g)
        
    return  out, out_g.get()
开发者ID:maweigert,项目名称:gputools,代码行数:20,代码来源:convolve_sep.py

示例14: test_bessel

# 需要导入模块: from gputools import OCLArray [as 别名]
# 或者: from gputools.OCLArray import from_array [as 别名]
def test_bessel(n,x):
    x_g = OCLArray.from_array(x.astype(float32))
    res_g = OCLArray.empty_like(x.astype(float32))
    
    p = OCLProgram(absPath("kernels/bessel.cl"))
    p.run_kernel("bessel_fill",x_g.shape,None,
                 x_g.data,res_g.data,int32(n))

    return res_g.get()
开发者ID:maweigert,项目名称:bpm,代码行数:11,代码来源:_focus_fields_debye.py

示例15: focus_field_debye_at

# 需要导入模块: from gputools import OCLArray [as 别名]
# 或者: from gputools.OCLArray import from_array [as 别名]
def focus_field_debye_at(x,y,z,lam, NA, n0 = 1., n_integration_steps = 200):
    """ the same as focus_field_debye but for the coordinates given in x, y, z (arrays of same shape)

        slower than focus_field_debye as it doesnt assume the coordinates to be on a grid
    """

    print absPath("kernels/psf_debye.cl")
    p = OCLProgram(absPath("kernels/psf_debye.cl"),
                   build_options = str("-I %s -D INT_STEPS=%s"%(absPath("."),n_integration_steps)))

    if np.isscalar(NA):
        NA = [0.,NA]

    alphas = np.arcsin(np.array(NA)/n0)
    assert len(alphas)%2 ==0

    assert x.shape == y.shape == z.shape
    dshape =x.shape
    N = np.prod(dshape)

    x_g = OCLArray.from_array(x.flatten().astype(np.float32))
    y_g = OCLArray.from_array(y.flatten().astype(np.float32))
    z_g = OCLArray.from_array(z.flatten().astype(np.float32))

    u_g = OCLArray.empty(N,np.float32)
    ex_g = OCLArray.empty(N,np.complex64)
    ey_g = OCLArray.empty(N,np.complex64)
    ez_g = OCLArray.empty(N,np.complex64)

    alpha_g = OCLArray.from_array(alphas.astype(np.float32))

    p.run_kernel("debye_wolf_at",(N,),None,
                 x_g.data,y_g.data,z_g.data,
                 ex_g.data,ey_g.data,ez_g.data, u_g.data,
                 np.float32(1.),np.float32(0.),
                 np.float32(lam/n0),
                 alpha_g.data, np.int32(len(alphas)))

    u = u_g.get().reshape(dshape)
    ex = ex_g.get().reshape(dshape)
    ey = ey_g.get().reshape(dshape)
    ez = ez_g.get().reshape(dshape)

    return u, ex, ey, ez
开发者ID:maweigert,项目名称:bpm,代码行数:46,代码来源:_focus_fields_debye.py


注:本文中的gputools.OCLArray.from_array方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。