本文整理汇总了Python中google.cloud.dataflow.pipeline.Pipeline.run方法的典型用法代码示例。如果您正苦于以下问题:Python Pipeline.run方法的具体用法?Python Pipeline.run怎么用?Python Pipeline.run使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类google.cloud.dataflow.pipeline.Pipeline
的用法示例。
在下文中一共展示了Pipeline.run方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_timestamped_with_combiners
# 需要导入模块: from google.cloud.dataflow.pipeline import Pipeline [as 别名]
# 或者: from google.cloud.dataflow.pipeline.Pipeline import run [as 别名]
def test_timestamped_with_combiners(self):
p = Pipeline('DirectPipelineRunner')
result = (p
# Create some initial test values.
| Create('start', [(k, k) for k in range(10)])
# The purpose of the WindowInto transform is to establish a
# FixedWindows windowing function for the PCollection.
# It does not bucket elements into windows since the timestamps
# from Create are not spaced 5 ms apart and very likely they all
# fall into the same window.
| WindowInto('w', FixedWindows(5))
# Generate timestamped values using the values as timestamps.
# Now there are values 5 ms apart and since Map propagates the
# windowing function from input to output the output PCollection
# will have elements falling into different 5ms windows.
| Map(lambda (x, t): TimestampedValue(x, t))
# We add a 'key' to each value representing the index of the
# window. This is important since there is no guarantee of
# order for the elements of a PCollection.
| Map(lambda v: (v / 5, v)))
# Sum all elements associated with a key and window. Although it
# is called CombinePerKey it is really CombinePerKeyAndWindow the
# same way GroupByKey is really GroupByKeyAndWindow.
sum_per_window = result | CombinePerKey(sum)
# Compute mean per key and window.
mean_per_window = result | combiners.Mean.PerKey()
assert_that(sum_per_window, equal_to([(0, 10), (1, 35)]),
label='assert:sum')
assert_that(mean_per_window, equal_to([(0, 2.0), (1, 7.0)]),
label='assert:mean')
p.run()
示例2: _run_write_test
# 需要导入模块: from google.cloud.dataflow.pipeline import Pipeline [as 别名]
# 或者: from google.cloud.dataflow.pipeline.Pipeline import run [as 别名]
def _run_write_test(self,
data,
return_init_result=True,
return_write_results=True):
write_to_test_sink = WriteToTestSink(return_init_result,
return_write_results)
p = Pipeline(options=PipelineOptions([]))
result = p | df.Create('start', data) | write_to_test_sink
assert_that(result, is_empty())
p.run()
sink = write_to_test_sink.last_sink
self.assertIsNotNone(sink)
self.assertEqual(sink.state, _TestSink.STATE_FINALIZED)
if data:
self.assertIsNotNone(sink.last_writer)
self.assertEqual(sink.last_writer.state, _TestWriter.STATE_CLOSED)
self.assertEqual(sink.last_writer.write_output, data)
if return_init_result:
self.assertEqual(sink.last_writer.init_result,
_TestSink.TEST_INIT_RESULT)
self.assertEqual(sink.init_result_at_finalize,
_TestSink.TEST_INIT_RESULT)
self.assertIsNotNone(sink.last_writer.uid)
if return_write_results:
self.assertEqual(sink.write_results_at_finalize,
[_TestWriter.TEST_WRITE_RESULT])
else:
self.assertIsNone(sink.last_writer)
示例3: test_multi_valued_singleton_side_input
# 需要导入模块: from google.cloud.dataflow.pipeline import Pipeline [as 别名]
# 或者: from google.cloud.dataflow.pipeline.Pipeline import run [as 别名]
def test_multi_valued_singleton_side_input(self):
pipeline = Pipeline('DirectPipelineRunner')
pcol = pipeline | Create('start', [1, 2])
side = pipeline | Create('side', [3, 4]) # 2 values in side input.
pcol | FlatMap('compute', lambda x, s: [x * s], AsSingleton(side))
with self.assertRaises(ValueError) as e:
pipeline.run()
示例4: test_word_count_using_get
# 需要导入模块: from google.cloud.dataflow.pipeline import Pipeline [as 别名]
# 或者: from google.cloud.dataflow.pipeline.Pipeline import run [as 别名]
def test_word_count_using_get(self):
pipeline = Pipeline('DirectPipelineRunner')
lines = pipeline | Create('SomeWords', [DataflowTest.SAMPLE_DATA])
result = (
(lines | FlatMap('GetWords', lambda x: re.findall(r'\w+', x)))
.apply('CountWords', DataflowTest.Count))
assert_that(result, equal_to(DataflowTest.SAMPLE_RESULT))
pipeline.run()
示例5: test_map
# 需要导入模块: from google.cloud.dataflow.pipeline import Pipeline [as 别名]
# 或者: from google.cloud.dataflow.pipeline.Pipeline import run [as 别名]
def test_map(self):
pipeline = Pipeline('DirectPipelineRunner')
lines = pipeline | Create('input', ['a', 'b', 'c'])
result = (lines
| Map('upper', str.upper)
| Map('prefix', lambda x, prefix: prefix + x, 'foo-'))
assert_that(result, equal_to(['foo-A', 'foo-B', 'foo-C']))
pipeline.run()
示例6: test_iterable_side_input
# 需要导入模块: from google.cloud.dataflow.pipeline import Pipeline [as 别名]
# 或者: from google.cloud.dataflow.pipeline.Pipeline import run [as 别名]
def test_iterable_side_input(self):
pipeline = Pipeline('DirectPipelineRunner')
pcol = pipeline | Create('start', [1, 2])
side = pipeline | Create('side', [3, 4]) # 2 values in side input.
result = pcol | FlatMap('compute',
lambda x, s: [x * y for y in s], AllOf(side))
assert_that(result, equal_to([3, 4, 6, 8]))
pipeline.run()
示例7: test_default_value_singleton_side_input
# 需要导入模块: from google.cloud.dataflow.pipeline import Pipeline [as 别名]
# 或者: from google.cloud.dataflow.pipeline.Pipeline import run [as 别名]
def test_default_value_singleton_side_input(self):
pipeline = Pipeline('DirectPipelineRunner')
pcol = pipeline | Create('start', [1, 2])
side = pipeline | Create('side', []) # 0 values in side input.
result = (
pcol | FlatMap('compute', lambda x, s: [x * s], AsSingleton(side, 10)))
assert_that(result, equal_to([10, 20]))
pipeline.run()
示例8: test_reuse_cloned_custom_transform_instance
# 需要导入模块: from google.cloud.dataflow.pipeline import Pipeline [as 别名]
# 或者: from google.cloud.dataflow.pipeline.Pipeline import run [as 别名]
def test_reuse_cloned_custom_transform_instance(self):
pipeline = Pipeline(DirectPipelineRunner())
pcoll1 = pipeline | Create('pcoll1', [1, 2, 3])
pcoll2 = pipeline | Create('pcoll2', [4, 5, 6])
transform = PipelineTest.CustomTransform()
result1 = pcoll1 | transform
result2 = pcoll2 | transform.clone('new label')
assert_that(result1, equal_to([2, 3, 4]), label='r1')
assert_that(result2, equal_to([5, 6, 7]), label='r2')
pipeline.run()
示例9: test_create
# 需要导入模块: from google.cloud.dataflow.pipeline import Pipeline [as 别名]
# 或者: from google.cloud.dataflow.pipeline.Pipeline import run [as 别名]
def test_create(self):
pipeline = Pipeline('DirectPipelineRunner')
pcoll = pipeline | Create('label1', [1, 2, 3])
assert_that(pcoll, equal_to([1, 2, 3]))
# Test if initial value is an iterator object.
pcoll2 = pipeline | Create('label2', iter((4, 5, 6)))
pcoll3 = pcoll2 | FlatMap('do', lambda x: [x + 10])
assert_that(pcoll3, equal_to([14, 15, 16]), label='pcoll3')
pipeline.run()
示例10: test_tuple_combine_fn_without_defaults
# 需要导入模块: from google.cloud.dataflow.pipeline import Pipeline [as 别名]
# 或者: from google.cloud.dataflow.pipeline.Pipeline import run [as 别名]
def test_tuple_combine_fn_without_defaults(self):
p = Pipeline('DirectPipelineRunner')
result = (
p
| Create([1, 1, 2, 3])
| df.CombineGlobally(
combine.TupleCombineFn(min, combine.MeanCombineFn(), max)
.with_common_input()).without_defaults())
assert_that(result, equal_to([(1, 7.0 / 4, 3)]))
p.run()
示例11: test_tuple_combine_fn
# 需要导入模块: from google.cloud.dataflow.pipeline import Pipeline [as 别名]
# 或者: from google.cloud.dataflow.pipeline.Pipeline import run [as 别名]
def test_tuple_combine_fn(self):
p = Pipeline('DirectPipelineRunner')
result = (
p
| Create([('a', 100, 0.0), ('b', 10, -1), ('c', 1, 100)])
| df.CombineGlobally(combine.TupleCombineFn(max,
combine.MeanCombineFn(),
sum)).without_defaults())
assert_that(result, equal_to([('c', 111.0 / 3, 99.0)]))
p.run()
示例12: test_cached_pvalues_are_refcounted
# 需要导入模块: from google.cloud.dataflow.pipeline import Pipeline [as 别名]
# 或者: from google.cloud.dataflow.pipeline.Pipeline import run [as 别名]
def test_cached_pvalues_are_refcounted(self):
"""Test that cached PValues are refcounted and deleted.
The intermediary PValues computed by the workflow below contain
one million elements so if the refcounting does not work the number of
objects tracked by the garbage collector will increase by a few millions
by the time we execute the final Map checking the objects tracked.
Anything that is much larger than what we started with will fail the test.
"""
def check_memory(value, count_threshold):
gc.collect()
objects_count = len(gc.get_objects())
if objects_count > count_threshold:
raise RuntimeError(
'PValues are not refcounted: %s, %s' % (
objects_count, count_threshold))
return value
def create_dupes(o, _):
yield o
yield SideOutputValue('side', o)
pipeline = Pipeline('DirectPipelineRunner')
gc.collect()
count_threshold = len(gc.get_objects()) + 10000
biglist = pipeline | Create('oom:create', ['x'] * 1000000)
dupes = (
biglist
| Map('oom:addone', lambda x: (x, 1))
| FlatMap('oom:dupes', create_dupes,
AsIter(biglist)).with_outputs('side', main='main'))
result = (
(dupes.side, dupes.main, dupes.side)
| Flatten('oom:flatten')
| CombinePerKey('oom:combine', sum)
| Map('oom:check', check_memory, count_threshold))
assert_that(result, equal_to([('x', 3000000)]))
pipeline.run()
self.assertEqual(
pipeline.runner.debug_counters['element_counts'],
{
'oom:flatten': 3000000,
('oom:combine/GroupByKey/reify_windows', None): 3000000,
('oom:dupes/oom:dupes', 'side'): 1000000,
('oom:dupes/oom:dupes', None): 1000000,
'oom:create': 1000000,
('oom:addone', None): 1000000,
'oom:combine/GroupByKey/group_by_key': 1,
('oom:check', None): 1,
'assert_that/singleton': 1,
('assert_that/Map(match)', None): 1,
('oom:combine/GroupByKey/group_by_window', None): 1,
('oom:combine/Combine/ParDo(CombineValuesDoFn)', None): 1})
示例13: test_empty_side_outputs
# 需要导入模块: from google.cloud.dataflow.pipeline import Pipeline [as 别名]
# 或者: from google.cloud.dataflow.pipeline.Pipeline import run [as 别名]
def test_empty_side_outputs(self):
pipeline = Pipeline('DirectPipelineRunner')
nums = pipeline | Create('Some Numbers', [1, 3, 5])
results = nums | FlatMap(
'ClassifyNumbers',
lambda x: [x, SideOutputValue('even' if x % 2 == 0 else 'odd', x)]
).with_outputs('odd', 'even', main='main')
assert_that(results.main, equal_to([1, 3, 5]))
assert_that(results.odd, equal_to([1, 3, 5]), label='assert:odd')
assert_that(results.even, equal_to([]), label='assert:even')
pipeline.run()
示例14: test_timestamped_value
# 需要导入模块: from google.cloud.dataflow.pipeline import Pipeline [as 别名]
# 或者: from google.cloud.dataflow.pipeline.Pipeline import run [as 别名]
def test_timestamped_value(self):
p = Pipeline('DirectPipelineRunner')
result = (p
| Create('start', [(k, k) for k in range(10)])
| Map(lambda (x, t): TimestampedValue(x, t))
| WindowInto('w', FixedWindows(5))
| Map(lambda v: ('key', v))
| GroupByKey())
assert_that(result, equal_to([('key', [0, 1, 2, 3, 4]),
('key', [5, 6, 7, 8, 9])]))
p.run()
示例15: test_empty_singleton_side_input
# 需要导入模块: from google.cloud.dataflow.pipeline import Pipeline [as 别名]
# 或者: from google.cloud.dataflow.pipeline.Pipeline import run [as 别名]
def test_empty_singleton_side_input(self):
pipeline = Pipeline('DirectPipelineRunner')
pcol = pipeline | Create('start', [1, 2])
side = pipeline | Create('side', []) # Empty side input.
def my_fn(k, s):
v = ('empty' if isinstance(s, EmptySideInput) else 'full')
return [(k, v)]
result = pcol | FlatMap('compute', my_fn, AsSingleton(side))
assert_that(result, equal_to([(1, 'empty'), (2, 'empty')]))
pipeline.run()