当前位置: 首页>>代码示例>>Python>>正文


Python Glove.most_similar方法代码示例

本文整理汇总了Python中glove.Glove.most_similar方法的典型用法代码示例。如果您正苦于以下问题:Python Glove.most_similar方法的具体用法?Python Glove.most_similar怎么用?Python Glove.most_similar使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在glove.Glove的用法示例。


在下文中一共展示了Glove.most_similar方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: print

# 需要导入模块: from glove import Glove [as 别名]
# 或者: from glove.Glove import most_similar [as 别名]
        print('Collocations: %s' % corpus_model.matrix.nnz)

    if args.train:
        # Train the GloVe model and save it to disk.

        if not args.create:
            # Try to load a corpus from disk.
            print('Reading corpus statistics')
            corpus_model = Corpus.load('corpus.model')

            print('Dict size: %s' % len(corpus_model.dictionary))
            print('Collocations: %s' % corpus_model.matrix.nnz)

        print('Training the GloVe model')

        glove = Glove(no_components=100, learning_rate=0.05)
        glove.fit(corpus_model.matrix, epochs=int(args.train),
                  no_threads=args.parallelism, verbose=True)
        glove.add_dictionary(corpus_model.dictionary)

        glove.save('glove.model')

    if args.query:
        # Finally, query the model for most similar words.
        if not args.train:
            print('Loading pre-trained GloVe model')
            glove = Glove.load('glove.model')

        print('Querying for %s' % args.query)
        pprint.pprint(glove.most_similar(args.query, number=10))
开发者ID:mouhidine,项目名称:glove-python,代码行数:32,代码来源:example.py

示例2: Glove

# 需要导入模块: from glove import Glove [as 别名]
# 或者: from glove.Glove import most_similar [as 别名]
        for line in datafile:
            # list of tokenized words
            yield line.lower().translate(None, delchars).split(' ')


if __name__ == '__main__':

    # initialize glove object
    glove = Glove(no_components=100, learning_rate=0.05)

    # read in the data to train on; this file is shakespeare text
    corpus_model = Corpus()
    corpus_model.fit(read_corpus("data/input.txt"), window=10)

    # fit the model using the given parameters
    glove.fit(corpus_model.matrix, epochs=10, no_threads=1, verbose=True)

    # add a dictionary just to make it easier for similarity queries
    glove.add_dictionary(corpus_model.dictionary)

    # save glove object to file
    glove.save_obj('glove.model.obj')

    # give me the 5 words most similar to each word in the words list in this
    # corpus and show me how similar the words are in this corpus to each word
    # in the words list in general
    words = ['sky', 'queen', 'car']

    for word in words:
        glove.most_similar(word, show_hist=False)
开发者ID:AimVoma,项目名称:sunny-side-up,代码行数:32,代码来源:save_and_load.py

示例3: Glove

# 需要导入模块: from glove import Glove [as 别名]
# 或者: from glove.Glove import most_similar [as 别名]
        for line in datafile:
            # list of tokenized words
            yield line.lower().translate(None, delchars).split(' ')


if __name__ == '__main__':

    # initialize glove object
    glove = Glove(no_components=100, learning_rate=0.05)
    
    # read in the data to train on; this file is shakespeare text
    corpus_model = Corpus()
    corpus_model.fit(read_corpus("data/input.txt"), window=10)
        
    # fit the model using the given parameters
    glove.fit(corpus_model.matrix, epochs=10, no_threads=1, verbose=True)
              
    # add a dictionary just to make it easier for similarity queries
    glove.add_dictionary(corpus_model.dictionary)

    # save glove object to file
    glove.save_obj('glove.model.obj')
    
    # give me the 5 words most similar to each word in the words list in this 
    # corpus and show me how similar the words are in this corpus to each word
    # in the words list in general
    words = ['sky', 'queen', 'car']
    
    for word in words:
        glove.most_similar(word, show_hist=True)
开发者ID:danforth36phd,项目名称:sunny-side-up,代码行数:32,代码来源:save_and_load.py

示例4: list

# 需要导入模块: from glove import Glove [as 别名]
# 或者: from glove.Glove import most_similar [as 别名]
import itertools
from gensim.models.word2vec import Text8Corpus
from glove import Corpus, Glove

# for installing text8 corpus you should follow this commands

# wget http://mattmahoney.net/dc/text8.zip -P /tmp
# unzip text8.zip


sentences = list(itertools.islice(Text8Corpus('/tmp/text8'), None))
corpus = Corpus()
corpus.fit(sentences, window=10)
glove = Glove(no_components=100, learning_rate=0.05)
glove.fit(corpus.matrix, epochs=30, no_threads=4, verbose=True)
glove.add_dictionary(corpus.dictionary)

print glove.most_similar('frog', number=10)
print glove.most_similar('girl', number=10)
print glove.most_similar('car', number=10)
开发者ID:eachsaj,项目名称:Python-Natural-Language-Processing,代码行数:22,代码来源:gloveexample.py


注:本文中的glove.Glove.most_similar方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。